Εισαγωγή στις βασικές έννοιες των Μαθηματικών

9ο Μάθημα
Μέγιστος κοινός διαιρέτης
Ελάχιστο κοινό πολλαπλάσιο

Πρώτοι αριθμοί

Θεώρημα
Κάθε σύνθετος φυσικός αριθμός $\alpha > 1$ έχει ένα τουλάχιστον πρώτο διαιρέτη $p \leq \sqrt{\alpha}$

Πρώτοι αριθμοί

Πόρισμα
Αν ένας φυσικός αριθμός $\alpha > 1$ δεν διαιρείται από κανένα πρώτο αριθμό $p \leq \sqrt{\alpha}$ τότε $\alpha$ είναι πρώτος αριθμός.

Θεμελιώδες Θεώρημα της Αριθμητικής
Κάθε ακέραιος αριθμός $\alpha > 1$ μπορεί να αναλυθεί κατά ένα και μοναδικό τρόπο σε γινόμενο πρώτων παραγόντων (αν δεν λάβουμε υπόψη τη διάταξη).

έτσι εξετάζω αν ένας αριθμός είναι πρώτος ή σύνθετος
Εύρεση Μ.Κ.Δ.

1ος τρόπος:

1. Παύρνοντας από τις πρωτογενείς τους αναλύσεις τους κοινούς παράγοντες στον μικρότερο εκθέτη.

Εύρεση Μ.Κ.Δ. – 1ος τρόπος

• Βρεύτε τον (120 , 50)
  1. Αναλύω και τους δύο αριθμούς σε γινόμενο πρώτων παραγόντων
  2. Γράφω τους κοινούς παράγοντες
  3. Υψώνω καθένα από τους κοινούς παράγοντες στον μικρότερο εκθέτη που εμφανίζεται.

120 = 2^3·5
50 = 2·5^2
(120 , 50) = 2·5

Εύρεση Μ.Κ.Δ. – 1ος τρόπος

• Εύρεση του (120 , 50)

  
<table>
<thead>
<tr>
<th>120</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2^2</td>
</tr>
<tr>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

2ος τρόπος:

• Εφαρμόζοντας τον Ευκλείδειο αλγόριθμο.
• Παράδειγμα: (2006 , 130)
Εύρεση Μ.Κ.Δ.
• 2ος τρόπος (Ευκλείδειος αλγόριθμος)
  2006 = 130·15 + 56
  130 = 56·2 + 18
  56 = 18·3 + 2
  18 = 2·9 + 0
• Ο Μ.Κ.Δ. ισούται με το τελευταύο μη μηδενικό υπόλοιπο

Άσκηση
• Βρείτε τους (2007, 150) και (625, 11025), χρησιμοποιώντας τον ευκολότερο (συντομότερο;) τρόπο.

Άσκηση χρήσης του ΜΚΔ
• Απλοποιήστε τα κλάσματα:
  \[
  \frac{92}{286} \quad \frac{184}{188}
  \]

Ιδιότητες ΜΚΔ
• Αν \( \lambda \neq 0 \): \( (\lambda a_1, \lambda a_2, ..., \lambda a_n) = |\lambda|(a_1, a_2, ..., a_n) \)
• Αν \( y = a_1x_1 + a_2x_2 + ... + a_nx_n \):
  \( (a_1, a_2, ..., a_n, y) = (a_1, a_2, ..., a_n) \)
• Αν \( (a_1, a_2, ..., a_n) = d \) τότε \( \left( \frac{a_1}{d}, \frac{a_2}{d}, ..., \frac{a_n}{d} \right) = 1 \)
• Ισχύει: \( (a_1^n, a_2^n, ..., a_n^n) = (a_1, a_2, ..., a_n)^n \)
• \( (\alpha, \beta, \gamma, \delta) = ((\alpha, \beta), \gamma, \delta) \)
### Ιδιότητες ΜΚΔ

- \((20, 35, 60) = (5 \cdot 4, 5 \cdot 7, 5 \cdot 12) = 5(4, 7, 12) = 5\)
- \((20, 35, 90) = (20, 35, 20 + 2 \cdot 35) = (20, 35) = 5\)
- \((6, 10) = 2 \text{ επομένως } \left(\frac{6}{2}, \frac{10}{2}\right) = (3, 5) = 1\)
- \((16, 81) = (2^4, 3^4) = (2, 3)^4 = 1^4 = 1\)
- \((4, 16, 64) = (2^2, 4^2, 8^2) = (2, 4, 8)^2 = 4\)
- \((7, 21, 40, 155) = ((7, 21), 40, 155) = (7, 40, 155) = (7, 5) = 1\)

### Ελάχιστο κοινό πολλαπλάσιο

O αριθμός μ λέγεται ελάχιστο κοινό πολλαπλάσιο των α₁, α₂, ..., αν αν:
1. \(α_i | μ, α_i | μ,..., α_i | μ\)
2. Αν υπάρχει ρ: \(α_i | ρ, α_i | ρ,..., α_i | ρ\), τότε: \(μ ≤ ρ\).

### Εύρεση ΕΚΠ

1. Με καταγραφή των πολλαπλασίων των αριθμών.
2. Παίρνοντας από τις πρωτογενείς τους αναλύσεις όλους τους παράγοντες στον μεγαλύτερο εκθέτη.
Εύρεση ΕΚΠ

- Βρεύτε τα:
  ◦ [8, 56]
  ◦ [25, 60]
  ◦ [140, 200]

Ιδιότητες ΕΚΠ

1. Αν \(\lambda \neq 0\) τότε \([\lambda a_1, \lambda a_2, ..., \lambda a_n] = \lambda [a_1, a_2, ..., a_n]\)
2. \([a, b, c, d] = [[a, b], c, d]\)

Παραδείγματα

1. \([30, 270, 620] = [10 \cdot 3, 10 \cdot 27, 10 \cdot 62] = 10[3, 27, 62] = ... \)
2. \([12, 30, 40, 240] = [[12, 30], 40, 240] = [60, 40, 240] = [[60, 40], 240] = ... \)

Ιδιότητες ΕΚΠ – Παράδειγμα

- Υπολογίστε το \([40, 50, 60]\) χρησιμοποιώντας τις ιδιότητες του ΕΚΠ.

\[
\begin{align*}
[40, 50, 60] & = [10 \cdot 4, 10 \cdot 5, 10 \cdot 6] = 10[4, 5, 6] = 10[[4,5],6] = 10[20, 6] = 10 \cdot 2[10, 3] = 20 \cdot 30 = 600
\end{align*}
\]
Θεώρημα

• Αν για τους αριθμούς α, β (με α, β ≠ 0) ο ΜΚΔ τους είναι (α, β) και το ΕΚΠ τους είναι [α, β] τότε ισχύει: (α, β)·[α, β] = α·β.

Πόρισμα:
• Αν οι α, β είναι πρώτοι μεταξύ τους τότε [α, β] = α·β

Πρόβλημα 1

• Ένας ανθοπώλης διαθέτει 60 άσπρα, 72 κόκκινα και 80 ροζ τριαντάφυλλα. Πόσες το πολύ ομοίες ανθοδέσμες μπορεί να σχηματίσει και πόσα τριαντάφυλλα από κάθε χρώμα θα περιέχει η κάθε μία;
Πρόβλημα 1 – Απάντηση
- Άρα ο μέγιστος αριθμός από ανθοδέσμες είναι τέσσερις (4).
- Κάθε ανθοδέσμη θα περιέχει:
  - 60:4 = 15 άσπρα τριαντάφυλλα
  - 72:4 = 18 κόκκινα τριαντάφυλλα
  - 80:4 = 20 ροζ τριαντάφυλλα

Πρόβλημα 2
- Δύο κατασκοπευτικοί δορυφόροι βρίσκονται σε τροχιές που περνούν πάνω από τα Ιωάννινα. Ο ένας εκτελεί μία πλήρη περιφορά γύρω από τη γη σε 20 ώρες, ενώ ο άλλος χρειάζεται 21 ώρες. Την Πέμπτη 12 Δεκεμβρίου του 2013, στις 3:00 μ.μ., οι δύο δορυφόροι βρίσκονταν ακριβώς πάνω από το Πανεπιστήμιο Ιωαννίνων. Ποια μέρα της εβδομάδας και ποια ώρα θα εξαναβρεθούν ακριβώς πάνω από το Πανεπιστήμιο Ιωαννίνων;

Πρόβλημα 2 – Λύση
- Το πρόβλημα απαιτεί την εύρεση του πρώτου κοινού πολλαπλασίου δύο αριθμών, δηλαδή του Ε.Κ.Π.

Πρόβλημα 2 – Λύση
- [20, 21]
- \[20 = 2^2 \cdot 5 \]
- \[21 = 3 \cdot 7 \]
- \[\text{Άρα } [20, 21] = 2^2 \cdot 3 \cdot 5 \cdot 7 = 420\]
Πρόβλημα 2 – Λύση

- Οι δύο δορυφόροι θα ξαναβρεθούν ακριβώς πάνω από το Πανεπιστήμιο Ιωαννίνων μετά από 420 ώρες.
- Οι 420 ώρες πρέπει να μετατραπούν σε ημέρες.
  - 420:24 = 17 και υπόλοιπο 12
- Άρα 420 ώρες = 17 ημέρες και 12 ώρες.
- Οι 17 ημέρες πρέπει να μετατραπούν σε εβδομάδες:
  - 17:7 = 2 και υπόλοιπο 3
- Άρα 17 ημέρες = 2 εβδομάδες και 3 ημέρες.

Πρόβλημα 2 – Απάντηση

- Οι δύο δορυφόροι θα ξαναβρεθούν ακριβώς πάνω από το Πανεπιστήμιο Ιωαννίνων μετά από 2 εβδομάδες 3 ημέρες και 12 ώρες, δηλαδή:
  - Δευτέρα στις 3:00 π.μ.