
Chapter 1

LORENTZ/POINCARE
INVARIANCE

1.1 The Lorentz Algebra

The requirement of relativistic invariance on any fundamental phys-
ical system amounts to invariance under Lorentz Transformations .
These transformations include boosts and spatial rotations and make
up the six-parameter Lorentz Group. Lorentz invariance corre-
sponds to the isotropy of spacetime. On the other hand the ho-
mogeneity of spacetime corresponds to invariance under spacetime
translations or Poincaré Transformations . The combined set of
these transformations makes up a ten-parameter group the Lorentz-
Poincaré Group or Inhomogeneous Lorentz Group.
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A Lorentz transformation of spacetime coordinates1

x′
µ

= Λµ
ν x

ν , (1.1)

defined by the requirement that it leaves2 s2 = xµ xν gµν invariant,
has to obey

Λµ
σ g

σρ Λν
ρ = gµν . (1.2)

For an infinitesimal Lorentz transformation

Λµ
ν = δµν + ωµν , (1.3)

with ω << 1 , the relations (1.1) and (1.2) lead to

δxµ ≡ x′
µ − xµ = ωµν x

ν , ωµν = −ωνµ . (1.4)

Note that only the so called Proper Lorentz Transformations , i.e.
those that have det(Λ) = +1, can be decomposed continuously into
infinitesimal transformations as in (1.2). In addition to these con-
tinuous transformations, we also have two Discrete Lorentz Trans-
formations , namely the Spatial Reflection (Parity)

P : (x0, xi) → (x0, −xi) =⇒ ΛP = Diag(1, −1, −1, −1) (1.5)

and the Time Reversal

T : (x0, xi) → (−x0, xi) =⇒ ΛT = Diag(−1, 1, 1, 1) . (1.6)

Although invariance under proper Lorentz transformations is an
exact symmetry of the world, this cannot be said for parity and

1All physical quantities are classified according to their transformation prop-
erties under Lorentz Transformations. A (contravariant) four-vector, by defi-
nition, transforms exactly as the spacetime position four-vector xµ

Aµ → A′µ = Λµν Aν .

Tensor quantities transform in terms of more than one Lorentz matrices as

F ′µν = Λµα Λνβ Fαβ .

2Throughout these notes we have chosen the metric to be gµν =
Diag(1, −1, −1, −1).
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time reversal, or combinations of them with a proper transforma-
tion, which are only approximate symmetries. Thus, the set of
all Lorentz transformations is divided into four subsets or, equiva-
lently, the Lorentz Group consists of four disconnected parts. These
are3the Proper-Orthocronous , or simply, proper Lorentz transfor-
mations L

(+)
↑ with det(Λ) = +1, Λ0

0 ≥ 1, the Proper, Non-Orthochronous

ones L
(+)
↓ with det(Λ) = +1, Λ0

0 ≤ −1, the Improper-Orthocronous

ones L
(−)
↑ with det(Λ) = −1, Λ0

0 ≥ 1 and the Improper, Non-

Orthocronous ones L
(−)
↓ with det(Λ) = −1, Λ0

0 ≤ −1.
Note that a generic Lorentz transformation Λ can be written as

Λ = eω (1.7)

in terms of a matrix ωµν which is not necessarily infinitesimal. Then,
from (1.2) we obtain

Λ⊥ gΛ = g =⇒ eω
⊥
g eω = g =⇒ g eω

⊥
g eω = 1 .

The last equation means that

gΛ⊥ g = Λ−1

or
g eω

⊥
g = e−ω =⇒ egω

⊥g = e−ω =⇒ gω⊥g = −ω .

Since, (ω⊥) µν = ωµν , this equation implies

ω µ
ν = −ωµν . (1.8)

Thus, the matrix ω is antisymmetric.
Let us next introduce the six matrices Jµν defined by their ele-

ments
(Jµν)αβ = i

(
gµαgνβ − g

µ
βg

να
)
. (1.9)

3Note that

Λµ0gµνΛν0 = g00 = 1 =⇒
(
Λ0

0

)2
= 1 +

3∑
i=1

(
Λi0
)2
≥ 1 .
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In terms of the J ’s we have the identity

ωµν = − i
2
ωαβ

(
Jαβ

)µ
ν
. (1.10)

Thus, the generic Lorentz transformation can also be written as

Λ = e−
i
2
ωαβJ

αβ

. (1.11)

The corresponding infinitesimal transformation reads

δxµ = ωµν x
ν = − i

2
ωαβ

(
Jαβ

)µ
ν
xν . (1.12)

The matrices Jµν are the six Generators of the Lorentz Group and
they satisfy the Algebra4

[Jµν , Jρσ] = igνρJµσ − igµρJνσ − igνσJµρ + igµσJνρ . (1.13)

Note that the group elements (1.11) are not unitary since, although
J ij are Hermitean, J0i are anti-Hermitean.

4Representations of the Lorentz group.
Let us introduce the following combinations of the generators

J
(1)
i ≡

1

4
εijkJjk −

i

2
J0i, J

(2)
i ≡

1

4
εijkJjk +

i

2
J0i .

With some tedious but straightforward computation it can be shown that these six operators
satisfy the following commutation relations[

J
(1)
i , J

(1)
j

]
= iεijk J

(1)
k
,

[
J
(2)
i , J

(2)
j

]
= iεijk J

(2)
k
,

[
J
(1)
i , J

(2)
j

]
= 0

The fact that the Lorentz Algebra so(3, 1) (Lie groups are usually denoted by capitals
(SO(3, 1), .SO(3), SU(2), . . . ) while the corresponding Algebras with lower case letters
(so(3, 1), so(3), su(2), . . . ) corresponds to the Algebra of two independent angular momenta
(so(3)⊕ so(3)) is expressed mathematically as an isomorphism

so(3, 1) ' so(3)⊕ so(3) ' su(2)⊕ su(2) .

This correspondence does not mean that the groups are the same. The Algebra determines
the group properties only for infinitesimal transformations or, equivalently, in the vicinity of
the identity. This is clear if one considers the matrix representation of the generators. Then,
a SO(3, 1) transformation is non-unitary, in contrast to the SU(2) transformations which
manifestly unitary.

It is straightforward now to use the above correspondence and the elementary theory of an-
gular momentum in order to classify each representation with the pair of angular momentum
quantum numbers (j1, j2), each of which can have values

j1, j2 = 0, 1/2, 1, 3/2, 2, . . . .

The multiplicity (dimensionality) of each representation is (2j1 + 1)(2j2 + 1).
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1.1.1 Representation of the Lorentz Algebra in
terms of differential operators

In addition to the above expressions of finite or infinitesimal Lorentz
transformations of the spacetime coordinates as 4 × 4 matrices, it
is possible to represent them as differential operators. Considering
an infinitesimal transformation δxµ = ωµα x

α, this goes as follows

δxµ = ωβα δ
µ
β x

α = ωβα ∂βx
µ xα = ωβα x

α ∂βx
µ = ωβα x

α ∂βxµ

=
1

2

(
ωβα x

α ∂β + ωαβ x
β ∂α

)
xµ =

1

2
ωαβ

(
xβ ∂α − xα∂β

)
xµ

or

δxµ =
i

2
ωαβ Lαβ xµ , (1.14)

where the quantities Lαβ, defined by

Lµν ≡ i (xµ ∂ν − xν ∂µ ) , (1.15)

represent the six Generators of the Lorentz Group as differential
operators in the case of the spacetime coordinate transformations.
In the form (1.14) the infinitesimal transformation is expressed as
resulting from the action of an operator

L̂(ω) ≡ i

2
ωαβ Lαβ =⇒ δxµ = L̂(ω)xµ . (1.16)

The generators (1.15) are in one to one correspondence with the
matrices Jµν introduced previously. The generators satisfy the
SO(3, 1) Lie Algebra

[Lµν ,Lρσ] = igνρLµσ − igµρLνσ − igνσLµρ + igµσLνρ . (1.17)

This is the same Algebra as (1.13).
This Algebra can also be expressed in terms of the operators

(1.16). It amounts to the simple commutation relation[
L̂(ω1), L̂(ω2)

]
= −L̂(ω3) , (1.18)

where
ωµν3 ≡ [ω1, ω2 ]µν . (1.19)
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1.2 Poincaré Transformations

Next we may consider spacetime translations

xµ → x′
µ

= xµ + αµ . (1.20)

An infinitesimal Poincaré transformation is

δxµ = x′
µ − xµ = εµ . (1.21)

A differential operator representation of a Poincaré transformation
can be readily derived writing (1.21) as

δxµ = εα ∂αx
µ ,

which can be further written as

δxµ = iεαPα xµ . (1.22)

The quantities
Pµ ≡ −i∂µ , (1.23)

are the four generators of the Poincaré Group in the case of space-
time coordinate transformations. Again, an infinitesimal Poincaré
transformation can be expressed in terms of an operator

T̂ (ε) ≡ iεαPα =⇒ δxµ = T̂ (ε)xµ . (1.24)

The complete Poincaré-Lorentz Lie Algebra can be written down
in terms of the ten generators Lµν and Pµ = −i∂µ as

[Lµν ,Lρσ] = igνρLµσ − igµρLνσ − igνσLµρ + igµσLνρ

[Lµν ,Pρ] = −igµρPν + igνρPµ

[Pµ,Pν ] = 0

(1.25)

In analogy to (1.16) and (1.24) we can introduce operators ex-
pressing an infinitesimal combined Poincaré-Lorentz transformation

L̂(ω, ε) ≡ i

2
ωαβ Lαβ + iεαPα =⇒ δxµ = L̂(ω, ε)xµ . (1.26)
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It is not difficult to show that[
L̂(ω1, ε1), L̂(ω2, ε2)

]
= −L̂(ω3, ε3) , (1.27)

where

ωµν3 = [ω1, ω2]µν , εµ3 = ε1ν ω
νµ
2 − ε2ν ω

νµ
1 . (1.28)


