
Chapter 10

QUANTIZED DIRAC
FIELDS

The first step in the quantization of the Dirac field is to impose
equal time commutation relations among the operator field vari-
ables. In fact this is not exactly possible, due to the Grassman
nature of spinor fields, and the correct procedure corresponds to
imposing anti-commutation relations . Since the canonical momen-
tum is

$(x) = iψ†(x) , (10.1)

we postulate

{
ψα(~x, x0), ψ†β(~x ′, x0)

}
= δαβδ(~x − ~x ′)

{ψα(~x, x0), ψβ(~x ′, x0) } = 0

(10.2)

Expanding the general operator solution of the Dirac equation in
plane wave spinors, we write

ψ(x) =
∑
s

∫ d3k

(2π)3/2
√

2E

(
a(s)(k)u(s)(k)e−ik·x + (b(s)(k))†v(s)(k)eik·x

)
(10.3)

where E =
√
m2 + ~k2. Enforcing the anticommutation relations on

ψ, implies the following anticommutation relations on the operators
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a, b{
a(s)(k), (a(s′)(k′))†

}
=
{
b(s)(k), (b(s′)(k′))†

}
= δss′δ(~k − ~k ′)

{
a(s)(k), a(s′)(k′)

}
=
{
b(s)(k), b(s′)(k′)

}
= 0

{
a(s)(k), b(s′)(k′)

}
=
{
a(s)(k), (b(s′)(k′))†

}
= 0 .

(10.4)
Substituting the expansion (10.3) into the Hamiltonian

H =
∫
d3x

(
−iψ~γ · ~∇ψ + mψψ

)
we obtain

H =
∑
s

∫
d3k E

(
(a(s)(k))†a(s)(k) − b(s)(k)(b(s)(k))†

)
. (10.5)

Anticommuting the b-operators, we obtain a normal-ordered ex-
pression plus the infinite constant 2δ(0)

∫
d3kE, which we drop and

have

H =
∑
s

∫
d3k E

(
(a(s)(k))†a(s)(k) + (b(s)(k))†b(s)(k)

)
. (10.6)

From this expression we see that a state |0〉, defined by

a(s)(k)|0〉 = b(s)(k)|0〉 = 0 (10.7)

is the lowest energy eigenstate, i.e. the vacuum state, having zero
energy.

The commutation relations[
H, a(s)(k)

]
= −Ea(s)(k)

[
H, (a(s)(k))†

]
= E(a(s)(k))†

[
H, b(s)(k)

]
= −Eb(s)(k)

[
H, (b(s)(k))†

]
= E(b(s)(k))†

(10.8)
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imply that the states

(a(s)(k))†|0〉, (b(s)(k))†|0〉 (10.9)

are one-particle energy-eigenstates of energy E =
√
~k2 +m2 and

polarization (spin) s. The operators a(s)(k), (a(s))† are annihilation
and creation operators of particles of the “a-type”, from now on,
named as particles , while the operators b(s)(k), (b(s))† are annihila-
tion and creation operators of particles of the “b-type”, from now
on, named as antiparticles . Note however that two-particle or two-
antiparticle states of the same momentum and spin do not exist
since

(a(s)(k))†(a(s)(k))†|0〉 = (b(s)(k))†(b(s)(k))†|0〉 = 0 (10.10)

due to the anticommutation relations, which imply that(
(a(s)(k))†

)2
=
(

(b(s)(k))†
)2

= 0 . (10.11)

This is an equivalent statement of the Pauli Exclusion Principle.
The automatic antisymmetry of any multiparticle state

|k1, s1; . . . ki, si, . . . , kj, sj; . . .〉 = −|k1, s1; . . . kj, sj, . . . , ki, si; . . .〉

is a direct consequence of the fact that we have imposed anticommu-
tation relations instead of commutation ones. At a mathematical
level, this is attributed to the Grassmann number nature of spinor
fields.

The normalization of one-particle states can be chosen in an
analogous fashion as in the case of the scalar field

|k, s〉 =
√

2E(a(s)(k))†|0〉 =⇒ 〈k, s|k′, s′〉 = 2E δss′ δ(~k − ~k ′)
(10.12)

Next, let’s consider the unitary operator that represents Lorentz
transformation on the states, namely, U(Λ). The expression for the
Lorentz transformed spinor field reads

Uψ(x)U † =
∑
s

∫ d3k

(2π)3/2
√

2E

(
Ua(s)(k)U †u(s)(k)e−ik·x
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+U(b(s)(k))†U †v(s)(k)eik·x
)
.

The anticommutation relations satisfied by a, b imply that, under
the transformation kµ′ = Λµ

νk
ν ,{

a†(k1), a(k2)
}

= δ(~k1 − ~k2) =⇒
{
a′
†
(k′1), a′(k′2)

}
= δ(~k ′1 − ~k ′2 )

{
Ua†(k1)U †, Ua(k2)U †

}
= δ(~k − ~k ′) =

E ′1
E
δ(~k′1 − ~k′2)

leading to √
EUa(k)U† =

√
E ′a′(k′)

√
EU(a(k))†U † =

√
E ′(a′(k′))†

(10.13)

Returning to the Lorentz-transformed spinor field ψ(x), we have

Uψ(x)U † =
∑
s

∫ d3k

(2π)3/22E

(√
2E ′a′

(s)
(k′)u(s)(k)e−ik·x +

√
2E ′(b(s)(k′))†v(s)(k)eik·x

)

=
∑
s

∫ d3k′

(2π)3/22E ′

(√
2E ′a′

(s)
(k′)u(s)(k)e−ik

′·x′ +
√

2E ′(b(s)(k′))†v(s)(k)eik
′·x′
)

=
∑
s

∫ d3k′

(2π)3/2
√

2E ′

(
a′

(s)
(k′)u(s)(k)e−ik

′·x′ + (b(s)(k′))†v(s)(k)eik
′·x′
)
,

where x′µ = Λµ
νx

ν . At this point, we note that

u(s)(k) = Λ−1
1/2u

(s)(k′) , (10.14)

where the Lorentz transformation matrix of a Dirac spinor is given
in (9.6). Thus, finally, we have

Uψ(x)U † = Λ−1
1/2ψ(x′) . (10.15)

As an application of the above let’s consider an infinitesimal
spatial rotation. Taking

Λi
j = δij + ωij, U = 1 +

i

2
ωijJij, Λ1/2 = 1 − i

2
ωijSij

Substituting in (10.15) we obtain

[ Jij, ψ(x) ] = (Sij + Lij )ψ(x) (10.16)
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with Lij = i(xi∇j−xi∇i). Introducing the spin and orbital angular
momentum

Sij = εijk


1
2
σk 0

0 1
2
σk

 ≡ εijkSk, Sk =
1

2
εkijS

ij

and

Lij = −iεijk
(
~x× ~∇

)
≡ εijkLk, Lk =

1

2
εkijLij

we can write

[ Jij, ψ(x) ] = εijk (Sk + Lk )ψ(x) = εijk




1
2
σk 0

0 1
2
σk

 +
(
~x× (−i~∇)

) ψ(x) .

(10.17)
The operator Jµν can be obtained if we follow the Noether pro-

cedure. It turns out that its spatial components Jij are

Jij = εijk

∫
d3xψ†(x)

(
Sk +

(
~x× (−i~∇)

) )
ψ(x) (10.18)

Substituting (10.18) into (10.17) the latter is immediately verified.
It can be easily seen that the Dirac Lagrangean is invariant

under the continuous set of transformations

ψ(x) → ψ′(x) = eiβ ψ(x) . (10.19)

The corresponding conserved Noether current is

J µ = ψ(x)γµψ(x) =⇒ ∂µJ µ = 0 . (10.20)

The associated conserved charge is

Q =
∫
d3xψ†(x)ψ(x) =

∑
s

∫
d3k

(
(a(s)(k))†a(s)(k) − (b(s)(k))†b(s)(k)

)
.

(10.21)
Acting with this charge on the one-particle states, we obtain

Q(a(s)(k))†|0〉 = (a(s)(k))†|0〉

Q(b(s)(k))†|0〉 = −(b(s)(k))†|0〉
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Introducing the name “Fermion Number” for the conserved charge,
we see that the one-particle states generated by a† have fermion
number +1, while the one-antiparticle states generated by b† have
fermion number −1. Furthermore, we can label these states as
follows

|k, s, +1〉 ≡
√

2E(a(s)(k))†|0〉

|k, s, −1〉 ≡
√

2E(b(s)(k))†|0〉
(10.22)

Closing this section let’s consider the quantity that is analogous
to the Feynman propagator of the scalar field defined by (6.9),
namely

SF (x− y) ≡ 〈0|T
(
ψ(x)ψ(y)

)
|0〉 . (10.23)

It is straightforward to check that

( iγ · ∂ −m )SF (x− y) = iδ(x− y) . (10.24)

It is interesting to note that this equation is satisfied by

SF (x− y) = i ( iγ · ∂ + m )DF (x− y) . (10.25)

Using the momentum space expression of DF (x− y), this becomes

SF (x− y) = i
∫ d4k

(2π)4

γµkµ +m

k2 −m2 + iε
. (10.26)


