Chapter 10

QUANTIZED DIRAC
FIELDS

The first step in the quantization of the Dirac field is to impose
equal time commutation relations among the operator field vari-
ables. In fact this is not exactly possible, due to the Grassman
nature of spinor fields, and the correct procedure corresponds to
imposing anti-commutation relations. Since the canonical momen-
tum is

o(@) = i), (10.1)
we postulate

{0al@, @0), $5(T7, 20) } = 00s0(T — 7
(10.2)

{©a(Z, 20), ¥s(Z', 20) } = 0

Expanding the general operator solution of the Dirac equation in
plane wave spinors, we write

d3k . .
_ (s) (s) —ik-x (s) 1.,(8) ik-x
ve) = 3 | Grayas (4O B + R R)e)
(10.3)
where ' = \/m? + k2, Enforcing the anticommutation relations on

¥, implies the following anticommutation relations on the operators
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a,

—

b
{a®(k), (@ RN} = {O k), OO RN} = duwd(k— )
{a@(k), a (k) } = {6 (k), b (k) } = 0

{aO®), 0H) | = {8, B (K))T} = 0.
(10.4)
Substituting the expansion (10.3) into the Hamiltonian

H = /d3x (—@@Vﬁw + mal/J)
we obtain

H=Y / EkE (a9 (k)a (k) — b (k)OO R)T) . (10.5)

Anticommuting the b-operators, we obtain a normal-ordered ex-
pression plus the infinite constant 25(0) [ d®kE, which we drop and
have

H = Z / &k E ((@© (k) (k) + 09 (k)6 (k) . (10.6)

From this expression we see that a state |0), defined by
a® (K)|0) = b (k)[0) = 0 (10.7)

is the lowest energy eigenstate, i.e. the vacuum state, having zero
energy.
The commutation relations

[H, a® (k)] = —Ea®) (k)

(10.8)
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imply that the states
(@ (k)1]0), (6@ (K))T[0) (10.9)

are one-particle energy-eigenstates of energy E = 1/ k2 + m? and
polarization (spin) s. The operators a®) (k), (a®)! are annihilation
and creation operators of particles of the “a-type”, from now on,
named as particles, while the operators b (k), (b)) are annihila-
tion and creation operators of particles of the “b-type”, from now
on, named as antiparticles. Note however that two-particle or two-
antiparticle states of the same momentum and spin do not exist
since

(a® (k) (@ (k)T]0) = 0O &) (K))T0) =0 (10.10)

due to the anticommutation relations, which imply that

((@®)) = (2w = 0. (10.11)

This is an equivalent statement of the Pauli Exclusion Principle.
The automatic antisymmetry of any multiparticle state

|l€1,81; kiasia ,kJ,SJ, ) = —]kl,sl; kj,Sj, --'7ki7$’i;

is a direct consequence of the fact that we have imposed anticommu-
tation relations instead of commutation ones. At a mathematical
level, this is attributed to the Grassmann number nature of spinor
fields.

The normalization of one-particle states can be chosen in an
analogous fashion as in the case of the scalar field

k,s) = V2E(a® (k)10) = (k,s|k,s') = 2E 8,0 6(k — k')
(10.12)
Next, let’s consider the unitary operator that represents Lorentz
transformation on the states, namely, U(A). The expression for the
Lorentz transformed spinor field reads

W' = 3 | s (00 e
7T
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+ U (k) U (k)e*) .

The anticommutation relations satisfied by a, b imply that, under
the transformation k*' = A* k¥,

{al(k), alka) } = 0k — ko) = {a"(K)), ' (K)) } = o(k — k)

{Ual(k)UT, Ua(ka)UT } = 6(k — k") = Ei5(/€/ — k)

leading to

VEUa(k)U' = VEd' (K
VEU(a(k))UT = VE(a'(K))f

Returning to the Lorentz-transformed spinor field ¢ (z), we have

(10.13)

Ut =3 / zﬂ g /22 = (V2B (1) (k)e™ 4 VRE (B () o) (k)™ )

&BK . . .
— Z/ 27T 3/22E/ 2E/al( )(k;’)u(s)(k:)e_’k e /2El(b(s)(k’,))TU(s)(k‘)eZk -z )

A3k 1) 11N (s —ik! 2! s) (1.t s ik’ -x’
= 3/ Gryagam (U EROE 5 GOROR)

where 2" = A x”. At this point, we note that
ul (k) = A7 pu (K), (10.14)

where the Lorentz transformation matrix of a Dirac spinor is given
n (9.6). Thus, finally, we have

U (a)UT = Ajjyi(a'). (10.15)

As an application of the above let’s consider an infinitesimal
spatial rotation. Taking

Alj = 53 + ij7 U=1+ §CUZ]JZ']', A1/2 =1- 50)”51']'
Substituting in (10.15) we obtain

[Jij, v(z)] = (S + Lij) ¥(z) (10.16)
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with £;; = i(2;V;—2,;V;). Introducing the spin and orbital angular
momentum

%Uk 0 1 N
Sij = €ijk = €kt Sk = 5k
0 O

1

2
and

. - =3 1 i

C’U = 165k <5L‘ X V) = eijkL/m Lk = iekijﬁj

we can write

N[

50 0

[Jij, ()] = € (Se + Li) (x) = € (( ) + (fx (—Zﬁ)) ) U(z).

(10.17)
The operator J,,, can be obtained if we follow the Noether pro-
cedure. It turns out that its spatial components J;; are

1
0 50

Jy = e / Frii(z) (S + (Fx (—iV)) )w(z)  (10.18)

Substituting (10.18) into (10.17) the latter is immediately verified.
It can be easily seen that the Dirac Lagrangean is invariant
under the continuous set of transformations

Y(z) = U'(2) = e p(a). (10.19)
The corresponding conserved Noether current is
T = Y(a)y*(z) = 9,TJ" = 0. (10.20)
The associated conserved charge is

Q = [ davi(a) S [k (@O E)a k) — @O E) )

(10.21)
Acting with this charge on the one-particle states, we obtain

Q@ (k))T0) = (a®(k))|0)
QU (K))T|0) = —(b™)(k))T|0)
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Introducing the name “Fermion Number” for the conserved charge,
we see that the one-particle states generated by a' have fermion
number +1, while the one-antiparticle states generated by b’ have
fermion number —1. Furthermore, we can label these states as

follows
|k, s, +1) = V2E(a® (k))T0)
(10.22)
|k, s, =1) = V2E(b)(k))T|0)

Closing this section let’s consider the quantity that is analogous
to the Feynman propagator of the scalar field defined by (6.9),
namely

Se(x —y) = (T (¢(x)¥(y)) 10) . (10.23)
It is straightforward to check that

(iy-0—m)Sp(x —y) = id(x —vy). (10.24)

It is interesting to note that this equation is satisfied by
Sp(z—y) =i(ivy-90 4+ m)Dp(x—y). (10.25)
Using the momentum space expression of Dp(x — y), this becomes

d*k Ak, +m
2m) k2 —m? + ie

Sp(z —y) = z/ ( (10.26)



