Καρκινικοί βιοδείκτες

Ευάγγελος Μπριασούλης
Καθηγητής Ογκολογίας
Πανεπιστήμιο Ιωαννίνων

cancer biomarkers
Καρκίνοι ...

cancer biomarkers
Mammography will detect most breast cancer cases and increase the chance of early detection with mammography saves lives and increases the effectiveness of treatment. Numerous studies have shown that the combination of clinical breast exam and mammography is more effective than either test alone. Postmenopausal women can reduce breast cancer risk in women at high risk. Raloxifene and tamoxifen are medications – tamoxifen and raloxifene – have been approved for the prevention of breast cancer in women at increased risk, such as women with a family history of breast cancer, through hormone therapy and physical activity, and maintaining a healthy body weight. Two genetic mutations (mutations in the BRCA1 and BRCA2 genes) appear to have a lower risk of certain side effects, such as uterine bleeding, with raloxifene compared to tamoxifen. Chemoprevention drugs, which prevent breast cancer, should consider counseling to determine if genetic testing is appropriate. Prevention measures, such as surgery or breast screening, should be considered in women with these mutations. Women who have these mutations will develop breast cancer with a 50%-85% reduced risk of developing breast cancer by age 70, the average risk for women in the general population, who have a 7% lifetime risk. The risk of developing breast cancer is increased in women who smoke, who have a strong family history of breast cancer, or who have been exposed to radiation to the chest. Prevention is possible for individuals with a strong family history of breast cancer. Tamoxifen and raloxifene are chemoprevention drugs, may be possible for individuals with a strong family history of breast cancer. Prevention is possible for individuals with a strong family history of breast cancer.
Δείκτες = μετρήσιμα σήματα

- Διάγνωσης
- Εξατομίκευσης θεραπείας
  - (Breast cancer, Lung Cancer, DLBCL. AML)
- Πρόβλεψης αταπόκρισης στη θεραπεία
- Παρακολούθησης ασθενούς
- Πρόγνωσης έκβασης στη θεραπεία
- Ανίχνευσης γενετικής προδιάθεσης
Δείκτες πού;

- Στο αίμα κυκλοφορούντες
  - κύτταρα, πρωτεϊνές, DNA, mRNA μετάγραφα, microRNA
- Στούς ιστούς
- Στα πτύελα, στις εκκρίσεις
Δείκτες πως;

- ELISA (στο αίμα)
- Ανοσοϊστοχημεία (ιστούς)
- Γενετικές μέθοδοι
  - (PCR, High Resolution Melt analysis, NGS)
- PET (μεταβολική απεικονόνση)
πεδίο έρευνας
Expression profiling of a panel of apoptosis-associated microRNAs in Acute Myeloid Leukemia identifies a number of differentially expressed microRNAs that target epigenetic modifiers

Eleftheria Hatzimichael1,2,3, Aggeliki Dasoula1,2, Maria Iglezou1, Andreas Katsenos1, Ioannis Sainis1, Isidore Rigoutsos1, Evangelos Briasoulis1,2.

1 Department of Hematology, University Hospital of Ioannina, St. Niarchou Av. 1, Ioannina 45500, Greece
2 Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece
3 Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA

INTRODUCTION

Identifying molecular aberrations that underlie Acute Myeloid Leukemia (AML) is still an unmet research target. Moreover few studies have implicated non-coding RNAs and especially microRNAs (miRNAs) in AML. We evaluated the expression of a panel of apoptosis-associated miRNAs in leukemic blasts isolated from AML patients and investigated their predicted targets.

METHODS

We used bone marrow or peripheral from 8 AML patients, donated at diagnosis for research purposes (5 male and 3 female, median age 67, range 31 – 83). Four cases had a normal karyotype (inv(3) & del(7) and t(3,12)(q26:p13). Mononuclear blood cells from two healthy individual donors at diagnosis for research purposes (5 male and 3 female, median age 67, range 31 – 83). Four cases had a normal karyotype (inv(3) & del(7) and t(3,12)(q26:p13). We used bone marrow or peripheral from 8 AML patients, donated at diagnosis for research purposes (5 male and 3 female, median age 67, range 31 – 83). Four cases had a normal karyotype (inv(3) & del(7) and t(3,12)(q26:p13). Mononuclear blood cells from two healthy individual donors at diagnosis for research purposes (5 male and 3 female, median age 67, range 31 – 83). Four cases had a normal karyotype (inv(3) & del(7) and t(3,12)(q26:p13). We used RNA22 to identify genes that are predicted to be simultaneously targeted by all of the 10 top upregulated miRNAs. The predicted targets for all top downregulated miRNAs include NSD1, KAT6B and SACS. NSD1 is an histone methyltransferase, whereas KAT6B is an histone acetyltransferase. The predicted targets of all top 10 upregulated miRNAs include 36 genes among which are Dicer1, Znf507, Znf704 and Mllt6 (Table 3).

RESULTS

We found 51 downregulated and 12 upregulated miRNAs compared to control (Figure 1). Among the downregulated miRNAs was the miR-29 family and among the upregulated was the miR-181 family, both of which have been previously implicated in AML. The top 10 downregulated miRNAs were miR-31-5p, miR-451a, miR-144-3p, miR-29b-3p, miR-204-5p, miR-9-5p, miR-409-3p, miR-29c-3p and miR-29a-3p (Table 1), whereas the top 10 upregulated miRNAs were miR-186-3p, miR-149-3p, let-7c-5p, miR-222-3p, miR-214-5p, miR-181a-5p, miR-181b-5p, miR-34a-5p and miR-181d-5p (Table 2).

CONCLUSIONS

A variety of microRNAs are dysregulated in patients with AML. We confirm that the miR-29 family and the miR-181 family have altered expression in AML. The predicted targets of the miRNAs that were found to be down regulated are involved in chromatin remodelling, suggesting that altered function of epigenetic modifiers may be due to dysregulation of miRNAs in AML.

Table 1
<table>
<thead>
<tr>
<th>Mature ID</th>
<th>Fold Regulation</th>
<th>Mature II</th>
<th>Fold Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-31-5p</td>
<td>-526.05</td>
<td>miR-1-3p</td>
<td>-9.48</td>
</tr>
<tr>
<td>miR-451a</td>
<td>-198.35</td>
<td>miR-134-5p</td>
<td>-7.04</td>
</tr>
<tr>
<td>miR-144-3p</td>
<td>-80.32</td>
<td>miR-101-5p</td>
<td>-6.68</td>
</tr>
<tr>
<td>miR-29b-3p</td>
<td>-64.85</td>
<td>miR-185-5p</td>
<td>-6.52</td>
</tr>
<tr>
<td>miR-204-5p</td>
<td>-28.45</td>
<td>let-7g-5p</td>
<td>-6.35</td>
</tr>
<tr>
<td>miR-9-5p</td>
<td>-26.92</td>
<td>miR-26b-3p</td>
<td>-5.95</td>
</tr>
<tr>
<td>miR-409-3p</td>
<td>-26.47</td>
<td>miR-98-5p</td>
<td>-5.82</td>
</tr>
<tr>
<td>miR-542-3p</td>
<td>-19.96</td>
<td>miR-30b-5p</td>
<td>-5.78</td>
</tr>
<tr>
<td>miR-122-3p</td>
<td>-16.82</td>
<td>miR-153-5p</td>
<td>-5.22</td>
</tr>
<tr>
<td>miR-29c-3p</td>
<td>-15.64</td>
<td>miR-27a-5p</td>
<td>-4.91</td>
</tr>
<tr>
<td>miR-185-5p</td>
<td>-14.27</td>
<td>miR-141-3p</td>
<td>-4.56</td>
</tr>
<tr>
<td>miR-134-3p</td>
<td>-14.17</td>
<td>miR-183-5p</td>
<td>-4.56</td>
</tr>
<tr>
<td>miR-145-5p</td>
<td>-13.74</td>
<td>let-7a-5p</td>
<td>-4.45</td>
</tr>
</tbody>
</table>

Table 2
<table>
<thead>
<tr>
<th>Mature ID</th>
<th>Fold Regulation</th>
<th>Mature II</th>
<th>Fold Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-186-3p</td>
<td>10.21</td>
<td>miR-34a-5p</td>
<td>9.37</td>
</tr>
<tr>
<td>miR-149-3p</td>
<td>8.50</td>
<td>miR-181b-5p</td>
<td>8.14</td>
</tr>
<tr>
<td>miR-222-3p</td>
<td>7.80</td>
<td>miR-181c-5p</td>
<td>7.70</td>
</tr>
<tr>
<td>miR-214-5p</td>
<td>6.68</td>
<td>miR-181a-3p</td>
<td>6.46</td>
</tr>
<tr>
<td>miR-22-5p</td>
<td>3.29</td>
<td>miR-7c-5p</td>
<td>3.21</td>
</tr>
<tr>
<td>miR-149-5p</td>
<td>2.72</td>
<td>miR-140-5p</td>
<td>2.72</td>
</tr>
<tr>
<td>miR-186-3p</td>
<td>2.33</td>
<td>miR-122-3p</td>
<td>2.50</td>
</tr>
<tr>
<td>miR-92a-3p</td>
<td>2.47</td>
<td>miR-125a-5p</td>
<td>2.47</td>
</tr>
<tr>
<td>miR-215-3p</td>
<td>2.00</td>
<td>miR-125b-5p</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Figure 1. Scattergram that plots the log2 of normalized microRNA expression levels between the control group (x-axis) and the AML group (y-axis).
Phase Two: Interpretation

I think I found a corner piece.
Conclusions
Our five-gene signature is closely associated with relapse-free and overall survival among patients with NSCLC.
Kaplan–Meier Estimates of Survival of Patients with NSCLC According to the Five-Gene Signatures as Measured by RT-PCR.

Overall survival and relapse-free survival are shown for the 101 patients with NSCLC (Panel A and Panel B, respectively) and for the 59 patients with stage I or II disease (Panel C and Panel D, respectively). Overall survival is also shown for the independent cohort of 60 patients (Panel E), for the 42 patients in this cohort who had stage I or II disease (Panel F), and for the 86 patients described in an independent set of published NSCLC microarray data\textsuperscript{10} (Panel G).
70 prognosis genes are involved in all aspects of tumor cell biology

- Proliferation
- Angiogenesis
- Adhesion to extracellular matrix
- Local invasion
- Intravasation, survival, extravasation
- Genes of unknown function (25)
Validation and Clinical Utility of a 70-Gene Prognostic Signature for Women With Node-Negative Breast Cancer

Marc Buyse, Sherane Loi, Laura van’t Veer, Giuseppe Viale, Mauro Delorenzi, Annuska M. Glaz, Mahasti Saghatelian d’Assignies, Jonas Bergh, Rosette Lideaux, Paul Ellis, Adrian Harris, Jan Bogaerts, Patrick Therasse, Arno Floore, Mohamed Amakrane, Fanny Piette, Emilie Rutgers, Christos Sotiropou, Fatima Cardoso, Martine J. Piccart

On behalf of the TRANSBIG Consortium

Background: A 70-gene signature was previously shown to have prognostic value in patients with node-negative breast cancer. Our goal was to validate the signature in an independent group of patients. Methods: Patients (n = 307, with 137 events: after a median follow-up of 13.6 years) from five European centers were divided into high- and low-risk groups based on the gene signature classification and on clinical risk classifications. Patients were assigned to the gene signature low-risk group if their 5-year distant metastasis-free survival probability as estimated by the gene signature was greater than 90%. Patients were assigned to the clinicopathologic low-risk group if their 10-year survival probability, as estimated by Adjuvant! software, was greater than 88% (for estrogen receptor [ER]–positive patients) or 92% (for ER-negative patients). Hazard ratios (HRs) were estimated to compare time to distant metastases, disease-free survival, and overall survival in high- and low-risk groups. Results: The 70-gene signature outperformed the clinicopathologic risk assessment in predicting all endpoints. For time to distant metastases, the gene signature yielded HR = 2.32 (95% confidence interval [CI] = 1.35 to 4.00) without adjustment for clinical risk and hazard ratios ranging from 2.13 to 2.15 after adjustment for various estimates of clinical risk; clinicopathologic risk using Adjuvant! software yielded an unadjusted HR = 1.68 (95% CI = 0.92 to 3.07). For overall survival, the gene signature yielded an unadjusted HR = 2.79 (95% CI = 1.60 to 4.87) and adjusted hazard ratios ranging from 2.63 to 2.89; clinicopathologic risk yielded an unadjusted HR = 1.67 (95% CI = 0.93 to 2.98). For patients in the gene signature high-risk group, 10-year overall survival was 0.69 for patients in both the low– and high–clinical risk groups; for patients in the gene signature low-risk group, the 10-year survival rates were 0.88 and 0.89, respectively. Conclusions: The 70-gene signature adds independent prognostic information to clinicopathologic risk assessment for patients with early breast cancer. [J Natl Cancer Inst 2006;98:1183-92]

Independent validation: Buyse et al. (2006) JNCI. 98, 1183-1192. 307 patients
Onco
type DX 21-gene recurrence score

16 cancer genes and 5 reference genes make up the Onco
type DX
gene panel. The expression of these genes is used to calculate the
recurrence score:

**PROLIFERATION**
- Ki-67
- STK15
- Survivin
- Cyclin B1
- MYBL2

**ESTROGEN**
- ER
- PR
- Bcl2
- SCUBE2

**BAG1**

**GSTM1**

**CD68**

**INVASION**
- Stromelysin 3
- Cathepsin L2

**HER2**
- GRB7
- HER2

**REFERENCE**
- Beta-actin
- GAPDH
- RPLPO
- GUS
- TFRC

\[
\text{RS} = + 0.47 \times \text{HER2 Group Score} - 0.34 \times \text{ER Group Score} + 1.04 \times \text{Proliferation Group Score} + 0.10 \times \text{Invasion Group Score} + 0.05 \times \text{CD68} - 0.08 \times \text{GSTM1} - 0.07 \times \text{BAG1}
\]

Recurrence Score

Rate of Distant Recurrence at 10 years

Low
RS < 18
Rec. Rate = 6.8%
C.I. = 4.0% - 9.6%

Intermediate
RS 18 - 31
Rec. Rate = 14.3%
C.I. = 8.3% - 20.3%

High
RS ≥ 31
Rec. Rate = 30.5%
C.I. = 23.6% - 37.4%

Onco
type DX™

Low RS associated with minimal chemotherapy benefit;
High RS associated with large chemotherapy benefit.

The Onco
type DX Recurrence Score provides precise,
quantitative information for individual patients on prognosis
across and statistically independent of information on patient
age, tumor size, and tumor grade.
Traditional vs High-throughput approach
Study design for biomarker discovery

Site 1 (100)
- Stage I/II (20)
  - Benign (50)
  - Control (30)
- Stage I/II (35)
  - Stage III/IV (2)
  - Benign (90)
  - Control (49)

Site 2 (176)
- Stage I/II (35)
  - Stage III/IV (103)
  - Benign (26)

Site 3 (164)
- Stage I/II (35)
  - Stage III/IV (2)
  - Benign (90)
  - Control (49)

Site 4 (63)
- Control 63

Site 5 (142)
- Ca (41)
  - Other Ca 1 (20)
  - Other Ca 2 (20)
  - Other Ca 3 (20)
  - Control (41)

Results:
- Descriptive statistics
- Two-group t-tests
- Performance
- ROC curve analysis

Multivariate Model Derivation

Cross Comparison

Candidate Markers

Independent Validation

Protein ID

Independent Validation by Immunoassay
We don’t know as much as we think we do!

ClinicallTrials.gov
A service of the U.S. National Institutes of Health

Study of Erbitux (Cetuximab) Given Alone to Patients With EGFR-Undetectable Metastatic Colon or Rectal Cancer That is Refractory to Chemotherapy

This study is currently recruiting participants.
Verified by ImClone Systems, November 2007

<table>
<thead>
<tr>
<th>Sponsors and Collaborators:</th>
<th>ImClone Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bristol-Myers Squibb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information provided by:</th>
<th>ImClone Systems</th>
</tr>
</thead>
</table>

| ClinicalTrials.gov Identifier: | NCT00083720 |
ΒΑΣΙΚΑ - ΠΡΑΚΤΙΚΑ
Proteins as biomarkers

The protein composition may be associated with disease processes in the organism and thus have potential utility as diagnostic markers.

- Proteins are closer to the actual disease process, in most cases, than parent genes
- Proteins are ultimate regulators of cellular function
- Most cancer markers are proteins
- The vast majority of drug targets are proteins

Ορισμός

• Οι καρκινικοί βιοδείκτες ή δείκτες όγκων είναι ουσίες που παράγονται από τα κύτταρα όγκων ή τον οργανισμό ως απάντηση στην παρουσία όγκων
ΟΓΚΟΣΥΣΧΕΤΙΖΟΜΕΝΟΙ «ΚΑΡΚΙΝΟΙ» ΔΕΙΚΤΕΣ
tumor-associated markers [TAM]

• Μπορούν να βρεθούν στα μεγάλα ποσά στο αίμα ασθενών με καρκίνο...

– ... μπορούν όμως να βρεθούν στα μεγάλα ποσά στο αίμα ή τα ούρα των ανθρώπων που δεν έχουν καρκίνο.
• ...μερικοί παράγονται μόνο από ένα ενιαίο είδος καρκίνου. Άλλοι από διάφορους τύπους καρκίνων.

• Οι περισσότεροι δείκτες είναι πρωτεϊνές ή μέρη πρωτεϊνών και ανιχνεύονται με αντισώματα.
ΤΑΜ: ιστορικά

- Ο πρώτος δείκτης που χρησιμοποιήθηκε για να ανιχνεύσει καρκίνο είναι η ανθρώπινη χοριακή γοναδοτροπίνη (HCG).

- Η πρώτη επιτυχία στην ανάπτυξη μιας εξέτασης αίματος για έναν κοινό καρκίνο αναγγέλθηκε το 1965.
  - O Joseph Gold βρήκε μια ουσία στο αίμα των ασθενών με καρκίνο εντέρου και το ονόμασε καρκινοεμβρυϊκό αντιγόνο (CEA).
ΤΑΜ: ιστορικά

• Μέχρι το τέλος της δεκαετίας του '70 αναπτύχθηκαν διάφορες δοκιμασίες αίματος για διάφορους καρκίνους.

• Στους νέους δείκτες δόθηκαν αριθμητικές κωδικές ονομασίες; CA 19-9 για τον καρκίνο του εντέρου και του παγκρέατος, CA 15-3 για τον καρκίνο του μαστού, και CA125 για τον καρκίνο των ωοθηκών.
Ιδανικός δείκτης

Ο ιδανικός καρκινικός δείκτης θα ήταν μια εξέταση αίματος με τα εξής χαρακτηριστικά:

1. Θετικό αποτέλεσμα μόνο στους ασθενείς
2. Συσχέτιση με το στάδιο
3. Συσχέτιση και την απάντηση στην θεραπεία
4. Εύκολη και αναπαραγόμενη μέτρηση

Κανένας διαθέσιμος δείκτης δεν ανταποκρίνεται στο ιδανικό.
Ευαισθησία-Sensitivity

- Είναι η ικανότητα μιας εξέτασης να πιστοποιεί την ύπαρξη νόσου

- το ποσοστό των αληθινά θετικών δοκιμασιών επί ύπαρξης νόσου
Είναι η ικανότητα μιας εξέτασεις να διακρίνει την απουσία νόσου

– ποσοστό αληθινά αρνητικών στο σύνολο των χωρίς νόσο εξεταζομένων
ΚΛΙΝΙΚΕΣ ΕΦΑΡΜΟΓΕΣ
μπορούν να χρησιμοποιηθούν

• στη διαλογή (screening) στό σύνολο ενός πληθυσμού των ατόμων υψηλού κινδύνου για την παρουσία καρκίνου

• στη διάγνωση του καρκίνου
μπορούν να χρησιμοποιηθούν

• στον καθορισμό της πρόγνωσης σε έναν ασθενή

• στη παρακολούθηση ασθενούς σε φάση θεραπείας ή ύφεσης νόσου
Διαλογή-screening (πρώιμη ανίχνευση)

...δεδομένου ότι η θεραπεία είναι πιθανότερο να είναι επιτυχής όταν ο καρκίνος βρίσκεται σε αρχικό στάδιο.

Στόχος να καλύπτουμε μεγάλους αριθμούς ανθρώπων για ανίχνευση ατόμων σε υψηλό κίνδυνο για τη νόσο.
Διάγνωση

- Η σωστή διάγνωση οδηγεί τη θεραπεία.

Οι ΚΔ βοηθούν δυνητικά στη διαφοροδιάγνωση μεταξύ καλοήθους ή κακοήθους νόσου
είναι πραγματικά καρκίνος;

CA 125 για τον ωοθηκικό καρκίνο

(μετεμμηνοπαυσιακές γυναίκες με κύστεις ωοθηκών >8 cm)
Πρόγνωση

• Πώς θα συμπεριφερθεί ο καρκίνος;

• Ποιά θα είναι η έκβαση της νόσου;
τα επίπεδα ΚΔ χρησιμοποιούνται σε κάποιες περιπτώσεις ως κριτήριο για τον καθορισμό της θεραπείας.
Παραδείγματα δεικτών – οδηγών θεραπείας

- **Her2/neu** στον καρκίνο μαστού
- μεταλλάξεις του υποδοχέα του EGF (EGFR) στον καρκίνο του πνεύμονα
- Μεταλλάξεις του ογκογονιδίου RAS στον καρκίνο εντέρου
- **AFP και HCG** στον καρκίνο του όρχεως
επιτήρηση

• Μετά την ολοκλήρωση μιας θεραπείας οι δείκτες μπορούν να:
  – διευκολύνουν την παρακολούθηση και να
  – μειώσουν την ανάγκη για απεικονιστικές εξετάσεις και να βοηθήσουν την έγκαιρη θεραπευτική παρέμβαση επί υποτροπής
• **CEA** στον κολορθικό καρκίνο
  
  – (όριο το 10 ng/dl για εγχειρησιμότητα υποτροπής)
Ιδανική εφαρμογή;

- Μέχρι σήμερα: κανένας δείκτης δεν έχει καθιερωθεί ως απόλυτο εργαλείο διαλογής καρκίνου είτε σε έναν υγιή γενικό πληθυσμό είτε σε πληθυσμούς υψηλού κινδύνου λόγω σχετικής έλλειψης ευαισθησίας και ειδικότητας των διαθέσιμων εξετάσεων.
Ιδανική εφαρμογή:

- Καμία ουσία που χρησιμοποιείται ως δείκτης δεν είναι μοναδική ώς προς τα καρκινικά κύτταρα:
  - Είτε αντιπροσωπεύουν παρεκκλίνουσα παραγωγή ενός φυσιολογικού στοιχείου από τους όγκους
  - είτε παράγονται από τον οργανισμό σε απάντηση στην παρουσία του καρκίνου.
Δείκτες σε κλινική χρήση
<table>
<thead>
<tr>
<th>Δείκτης</th>
<th>Όγκος στόχος</th>
<th>Ευαισθησία</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSA</td>
<td>Προστάτης</td>
<td>+++</td>
</tr>
<tr>
<td>βHCG</td>
<td>Όρχις, τροφοβλ</td>
<td>++</td>
</tr>
<tr>
<td>AFP</td>
<td>Όρχις, ηπάτωμα</td>
<td>++</td>
</tr>
<tr>
<td>CEA</td>
<td>Πνεύμων, έντερο κ.π.α</td>
<td>+/-</td>
</tr>
<tr>
<td>CA 15-3</td>
<td>Μαστός, νεφρό</td>
<td>+/-</td>
</tr>
<tr>
<td>CA 125</td>
<td>Ωοθήκη, πνεύμων</td>
<td>++</td>
</tr>
<tr>
<td>CA 19-9</td>
<td>Πάγκρεας, έντερο</td>
<td>+</td>
</tr>
</tbody>
</table>

*Στον ορό*
Στο καρκινικό κύτταρο

<table>
<thead>
<tr>
<th>Δείκτης</th>
<th>Όγκος στόχος</th>
<th>λειτουργία</th>
</tr>
</thead>
<tbody>
<tr>
<td>HER2</td>
<td>μαστός</td>
<td>Πρόγνωση, θεραπεία</td>
</tr>
<tr>
<td>EGFR</td>
<td>Πνεύμων</td>
<td>Πρόγνωση, θεραπεία</td>
</tr>
<tr>
<td>RAS</td>
<td>έντερο</td>
<td>θεραπεία</td>
</tr>
<tr>
<td>ER</td>
<td>μαστός</td>
<td>Πρόγνωση, θεραπεία</td>
</tr>
</tbody>
</table>
Αντιγόνα όγκων
Tumor associate antigens
Αντιγόνα όγκων

• Περιλαμβάνουν δείκτες που καθορίζονται από μονοκλωνικά αντισώματα ή πολυκλωνικούς αντιορούς και συχνά αποκαλούνται oncofetal (ογκο-εμβρυϊκά) αντιγόνα.

– Οι ογκοεμβρυϊκές ουσίες, εμφανίζονται στο έμβρυο απαντούν σε χαμηλά επίπεδα στον ενήλικο αλλά επανεμφανίζονται στον όγκο.
CEA
Καρκινοεμβρυϊκό αντιγόνο

• Είναι σύνθετη γλυκοπρωτεΐνη μοριακού βάρους 20 kd στη μεμβράνη των καρκινικών κυττάρων, από την οποία που μπορεί να απελευθερωθεί στο αίμα
CEA

- Χαμηλή ευαίσθηση και ειδικότητα
- Αυξημένα επίπεδα βρίσκονται σε ποικίλους καρκίνους
  - παχέος εντέρου
  - παγκρέατος
  - στομάχου
  - πνεύμονα
  - μαστού
CEA

• Οριακά αυξημένες τιμές διαπιστώνονται στο 19% των καπνιστών και σε 3% υγιούς πληθυσμού ελέγχου
**AFP αλφα-εμβρυική σφαιρίνη**

- είναι μια φυσιολογική εμβρυϊκή πρωτεΐνη

- Συντίθεται στο
  - ήπαρ,
  - το λεκιθικό ασκό
  - το γαστροεντερικό επιθήλιο.

- Έχει παρόμοια ομολογία ακολουθίας με τη λευκωματίνη
**AFP αλφα-εμβρυική σφαιρίνη**

- Αποτελεί συστατικό του εμβρυϊκού πλάσματος
  - φθάνει σε μέγιστη συγκέντρωση 3 mg/ml στις 12 εβδομάδες της κύησης.
  - Μετά από τη γέννηση καθαίρεται από την κυκλοφορία με χρόνο ημίσυας ζωής 3,5 ημέρες.
- Η συγκέντρωσή της στον ορό ενηλίκων είναι < 10 ng/ml.
• Είναι σημαντική στη διάγνωση του ηπατοκυτταρικού καρκινώματος

  – χρήσιμη ως δοκιμασία διαλογής σε πληθυσμούς όπου το ηπατοκυτταρικό καρκίνωμα ενδημεί, όπως η Αφρική και σε ασθενείς με θετικό HBsAg.
AFP

• Επίσης αυξάνει σε όγκους εκ γεννητικών κυττάρων
  – (germ cell όρχεως και ωοθηκών)

• Σε αυτούς τους όγκους αποτελεί ιδιαίτερα ευαίσθητη μέθοδο για την ένδειξη της υποτροπής ή την απάντηση στην θεραπεία.
Αυξημένη σε ορισμένες ηπατοπάθειες όπως η οξεία ιογενής ή φαρμακευτική ηπατίτιδα που χαρακτηρίζονται από ηπατική αναγέννηση.

τιμές < 500 ng/ml [ΦΤ <10] δεν «δείχνουν» ηπατοκυτταρικό καρκίνωμα
Το CA125 είναι αυξημένο στο 80% γυναικών με καρκίνο ωοθηκών

– Ανιχνεύεται από ένα μονοκλωνικό αντίσωμα (OC125) που παρήχθηκε με την ανοσοποίηση ποντικιών με κύτταρα ανθρώπινου ωοθηκικού καρκινώματος
Παρακολουθεί την πορεία της νόσου καρκίνου ωοθηκών: Μετά χειρουργική εκτομή ή ανταπόκριση στη χημειοθεραπεία τα επίπεδα ορού μειώνονται ανάλογα.

απαντά αυξημένο και σε άλλους καρκίνους: ενδομήτριου, παγκρέατος, πνεύμονα, μαστού...
CA 125

- Αυξάνει επίσης
  - στην εμηνόρροια, την εγκυμοσύνη, την ενδομητρίωση, και άλλες γυναικολογικές και μη καταστάσεις.

- Σαν εξέταση διαλογής χρησιμοποιείται σε γυναίκες με ευμεγέθεις κύστεις κύστεις ωοθήκης
CA 19-9

- Μονοκλωνικό αντίσωμα που ανιχνεύει ένα μονο-σιαλο-γαγγλιοσίδιο που βρίσκεται στους ασθενείς με αδενοκαρκίνωμα γαστρεντερικού.

- Αυξημένο σε 20-40% των περιπτώσεων γαστρικού και εντερικού καρκίνου και 70-93% στο πάγκρεατικό καρκίνο.
CA 15-3

- Αποτελεί γλυκότυπο της βλεννοπρωτεϊνης MUC1 που απαντά σε ποικιλία όγκων, φυσιολογικών ιστών και το μητρικό γάλα.

- Είναι αυξημένο σε λιγότερο από 10% των ασθενών με πρώιμο καρκίνο μαστού και σε περίπου 75% των ασθενών με μεταστατική νόσο.
Το PSA διαθέτει ένα τουλάχιστο από τα χαρακτηριστικά ιδανικού δείκτη – την ειδικότητα

– Είναι γλυκοπρωτεϊνη, η της οποίας η φυσιολογική λειτουργία είναι να διαλύει το σπερματικό πήγμα
PSA ειδικό προστατικό αντιγόνο

• Η αύξηση σχετίζεται με το στάδιο και τη μάζα της νεοπλασίας

• έχει προγνωστική αξία για ασθενείς με πολύ υψηλές τιμές πριν από τη χειρουργική επέμβαση
PSA ειδικό προστατικό αντιγόνο

• ο μόνος καρκινικός δείκτης που έχει ευρεία αποδοχή ως εξέταση διαλογής
## Age-Specific Reference for Serum PSA (Reference Range [ng/ml])

<table>
<thead>
<tr>
<th>Age Range (Years)</th>
<th>Black</th>
<th>Caucasians</th>
<th>Japanese</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 - 49</td>
<td>0.0 - 2.0</td>
<td>0.0 - 2.5</td>
<td>0.0 - 2.0</td>
</tr>
<tr>
<td>50 - 59</td>
<td>0.0 - 4.0</td>
<td>0.0 - 3.5</td>
<td>0.0 - 3.0</td>
</tr>
<tr>
<td>60 - 69</td>
<td>0.0 - 4.5</td>
<td>0.0 - 4.5</td>
<td>0.0 - 4.0</td>
</tr>
<tr>
<td>70 - 79</td>
<td>0.0 - 5.5</td>
<td>0.0 - 6.5</td>
<td>0.0 - 5.0</td>
</tr>
</tbody>
</table>
ορμόνες
ΟΡΜΟΝΕΣ

• υπέμετρη παραγωγή απεικονίζει ανεξέλεγκτο πολλαπλασιασμό ή μεταβολισμό κυττάρων

  – παραγωγή ινσουλίνης από τον όγκο κυττάρων νησιδίων, καλσιτονίνης από το μυελοειδές καρκίνωμα του θυροειδή
ΟΡΜΟΝΕΣ

• Η μπορεί να παράγεται «έκτοπα».  
  – Παραδείγματα: η παραγωγή του ACTH και ADH από τους καρκίνους πνευμόνων.
HCG Human Chorionic Gonadotropin

- Υλικοπρωτεΐνη που αποτελείται από τις υπομονάδες α, ε και β. Παράγεται από τα συγκυτιοτροφοβλαστικά κύτταρα του πλακούντα και αυξάνει χαρακτηριστικά στην εγκυμοσύνη.

- Οι σημαντικότερες χρήσεις της ως καρκινικός δείκτης είναι
  - στην τροφοβλαστική νόσο της κύησης και
  - στους όγκους εκ γεννητικών κυττάρων
HCG Human Chorionic Gonadotropin

- πολύτιμος δείκτης διαλογής και ανταπόκρισης στη θεραπεία τροφοβλαστικών όγκων της κύησης
Καρκινικοί Βιο-Δείκτες:

- Σημαντικό εργαλείο στην καθημερινή κλινική πράξη
- Σημαντικό πεδίο έρευνας με την ανάπτυξη καινοτόμων βιοτεχνολογικών μεθόδων