rm(list = ls(all=TRUE)) library(stats) par(bty = 'n') par(cex.lab=1.5) par(cex.axis=1.5) par(mar=c(4.5, 4.5, 2, 2)+0.1) par(bg = "azure") set.seed(1) T <- 100 png(filename="512a.png", width=600, height=400, pointsize=14, type="cairo", bg="azure") y <- cumsum(rnorm(T)) y <- ts(y) plot(y, xlim=c(0,T), ylim=c(-20,20), xaxs="i",yaxs="i", main="random walk", type="n") grid(lwd=2) axis(1, at=seq(0,T,T/10), label=F, tick=T); axis(2); lines(y, col=2, lwd=4) dev.off() png(filename="512b.png", width=600, height=400, pointsize=14, type="cairo", bg="azure") plot(y, xlim=c(0,T), ylim=c(-20,20), xaxs="i",yaxs="i", main="random walk", type="n") grid(lwd=2) axis(1, at=seq(0,T,T/10), label=F, tick=T); axis(2); lines(y, col=2, lwd=4) N <- 10 for (t in 1:N) { y1 <- cumsum(rnorm(T)) lines(y1, col=t+2, lwd=2, lty=2) } dev.off() png(filename="512c.png", width=600, height=400, pointsize=14, type="cairo", bg="azure") N <- 1000 x <- rep(0, N) plot(y, xlim=c(0,T), ylim=c(-30,30), xaxs="i",yaxs="i", main="random walk", type="n") grid(lwd=2) axis(1, at=seq(0,T,T/10), label=F, tick=T); axis(2); lines(y, col=2, lwd=4) for (t in 1:N) { y1 <- cumsum(rnorm(T)) lines(y1, col=t+2, lwd=2, lty=2) x[t] <- y1[T] } hist(x) dev.off() png(filename="512d.png", width=600, height=400, pointsize=14, type="cairo", bg="azure") library(corrplot) d <- data.frame(cbind(y[1:25], y[26:50], y[51:75], y[76:100])) cor <- cor(d) corrplot(cor, method="shade") dev.off()