Θέματα Διδακτικής των Φυσικών Εννοιών

Light, Science and Society The importance of plants for global CO2 reduction and wellbeing – Portugal

Διδάσκουσα: Αναπλ. Καθ. Αικατερίνη Γ. Πλακίτση

Άδειες Χρήσης

• Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
• Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.
Light, Science and Society: The importance of plants for global CO₂ reduction and wellbeing

Graça Carvalho – gracac@ie.uminho.pt
Fernando Guimarães – fernandoguimaraes@ie.uminho.pt

University of Minho Πανεπιστήμιο του Μινχο
Institute of Education Ινστιτούτο Εκπαίδευσης
Portugal Πορτογαλία

Contents
- Carbonsinks versus carbon sources
- Carbon cycle
- Respiration
- Photosynthesis
- Greenhouse effect
- The fatal flaw of carbon sinks
- Climate change: the forest connection
- Forests’ effect on the climate
- The climate’s effect on forests
- What can be done?

What are carbon sinks and carbon sources?

Discussion with your colleagues
- Give a definition
- Give some examples
- Specify if they act as sources or sinks at different times

What is the carbon cycle?

Discussion with your colleagues
- Give a definition
- Thinking in terms of:
 - Process
 - Place
 - Organisms
 - Sources versus Sinks

Write down your description and return it to us.

What are carbon sinks and carbon sources?

Not all stores of carbon are naturally cursed with fluctuations however

The most important carbon stores are fossil fuel deposits as they have the unique benefit of being buried deep inside the earth, naturally separated from the carbon cycling in the atmosphere.

What is the carbon cycle?
The carbon cycle is the process in which carbon atoms are recycled over and over again on Earth. Carbon recycling takes place within Earth’s biosphere and between living things and the nonliving environment.

Since a continual supply of carbon is essential for all living organisms, the carbon cycle is the name given to the different processes that move carbon from one to another.

The complete cycle is made up of "sources" that put carbon back into the environment and "sinks" that absorb and store carbon.

If a diagram were drawn showing the different processes that move carbon from one form to another, what could it be its main processes?

- photosynthesis
- respiration
- decomposition
- natural weathering of rocks
- the combustion of fossil fuels

Cellular respiration involves the breakdown of glucose in the presence of oxygen, releasing energy in the form of ATP.

[Diagram of the carbon cycle and cellular respiration process]
Cellular respiration

A TP

Photossynthesis

A TP

Breathing / Respiration

Food

People eat plants: directly or indirectly
Plants make their own food
Heterotrophs
Autotrophs

They need:
- water
- Minerals from the soil
- free CO₂
- Light

Chloroplast - organelle where the photosynthesis takes place.

Photosynthesis

Plants make their own food
Autotrophs

They need:
- water
- Minerals from the soil
- free CO₂
- Light

Discussion with your colleagues

- The photosynthesis occurs during the day only and the cellular respiration in the night only
- The photosynthesis light reaction occurs during the day only and the dark reaction in the night only

Write down your description and return it to us.
Not all stores of carbon are naturally cursed with fluctuations however.

The most important carbon stores are fossil fuel deposits as they have the unique benefit of being buried deep inside the earth, naturally separated from the carbon cycling in the atmosphere. This separation ends when humans burn coal, oil and natural gas, turning fossil carbon stores into atmospheric carbon. This release of carbon from fossil fuel has caused greenhouse gas (GHG).
We are still adding roughly 6 billion tonnes of carbon per year to the atmospheric carbon cycle, significantly altering the intricate web of carbon fluxes, and as a consequence, altering the global climate.

Because of this increase in atmospheric carbon, a lot of emphasis and hope has been put into the ability of trees, other plants and the soil to temporarily sink the carbon that fossil fuel burning releases into the atmosphere.

Indeed, the Kyoto Protocol, the international communities’ main instrument for halting global warming suggests that the absorption of carbon dioxide by trees and the soil is just as valid a means to achieve emission reduction commitments as cutting carbon dioxide emissions from fossil fuels.

The fatal flaw of carbon sinks

Most of NGOs disagrees with the assumption that planting trees or reducing deforestation is just as good as reducing emissions from burning fossil fuel. Such an assumption overlooks some important facts:

i) There is general agreement about the need to halt fossil fuel emissions, particularly in industrialised countries;

ii) All carbon is not the same.

iii) Afforestation - especially afforestation in northern tundra regions - may accelerate global warming.

iv) It is not possible to accurately measure the “sink” effect of a forest.

Climate change: the forest connection

Most people are now aware that the world’s hunger for energy from fossil fuel is leading to catastrophic climate change. What is becoming increasingly clear however is the effect that forests have on the climate and the climate has on forests.
Forests’ effect on the climate

Forests play an important role in regulating the earth’s temperature and weather patterns by storing large quantities of carbon and water.

Locally, trees provide shade, which in turn lowers summer temperatures and prevents the soil from drying out, they reduce heat loss from the ground in winter and prevent storm damage by providing shelter from wind.

Globally, forests regulate the global carbon cycle, having a profound effect on the climate.

The climate’s effect on forests

Global warming, which on a geological timescale is occurring in the equivalent of a split second, is significantly disrupting the intricate and poorly understood web of interactions that governs the very structure and composition of forest ecosystems.

This means that around a third of today’s forests are likely to change their species composition. A temperature increase of 3°C by 2100 would result in forest ecosystems moving 500 km towards the poles or 500 m in elevation in order to find the same climatic conditions.

What can be done?

Dank je wel
Go raibh maith agat
Tack
Obrigado
Thanks
Efharisto
Grazie
Τέλος Ενότητας

Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάκτορα.
- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτηθεί μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού.
- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα Ιστορικού Εκδόσεων Έργου

Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: