Τίτλος Μαθήματος: Χημεία Τροφίμων
Ενότητα: Χημεία και Τεχνολογία κρέατος
Διδάσκων: Καθηγητής Μιχάλης Κοντομηνάς
Τμήμα: Χημείας
ΜΕΡΟΣ ΤΕΤΑΡΤΟ
ΤΡΟΦΙΜΑ ΖΩΪΚΗΣ ΠΡΟΕΛΕΥΣΗΣ (ΖΩΪΚΑ ΤΡΟΦΙΜΑ)

Με τον όρο «ζωϊκά τρόφιμα» χαρακτηρίζονται κατά κύριο λόγο το κρέας, τα πουλερικά, τα θηράματα και τα ψάρια καθώς και τα προϊόντα που λαμβάνονται από τα ζώα: το γάλα, το τυρί, το βούτυρο, τα συγά κ.λπ.
Τα ζωϊκά τρόφιμα περιέχουν τις ίδιες τάξεις θρεπτικών υλών (πρωτεΐνες, λίπος, υδατάνθρακες κ.λπ.) με τα φυτικά τρόφιμα, σε διαφορετικές όμως αναλογίες. Επί πλέον τα ζωϊκά τρόφιμα δεν περιέχουν ποτέ την κυτταρίνη που απαιτά στα φυτικά τρόφιμα.
Η προτίμηση πολλών καταναλωτών για τα ζωϊκά τρόφιμα μπορεί ν’ αποδοθεί: α) στην ευχάριστη σομή και χεύση που αποκτούν ύστερα από κατάλληλη επεξεργασία· β) στη μεγάλη θρεπτική αξία που έχουν εξαιτίας της σημαντικής περιεκτικότητάς τους σε υψηλής βιολογικής αξίας πρωτεΐνες, σε βιταμίνες του συμπλέγματος B και σε πολύτιμο ανόργανα συστατικά, όπως είναι ο σίδηρος και ο φωσφόρος.
ΚΕΦΑΛΑΙΟ 10

ΚΡΕΑΣ ΚΑΙ ΠΡΟΪΟΝΤΑ ΚΡΕΑΤΟΣ

10.1 Εισαγωγή — δομή του μυός

Γενικά η λέξη κρέας σημαίνει τα κομμάτια των σφαχτών ή και ολόκληρα τα σφαχτά των ζώων ή των πτηνών που προορίζονται για τη διατροφή των ανθρώπων.

Ειδικά ως κρέας χαρακτηρίζονται οι μυϊκοί ιστοί του σώματος των ωφελίμων ζώων της κτηνοτροφίας (βοδιού, χοίρου, προβάτου κ.λπ.).

Τα κύρια δομικά συστατικά του σώματος των ζώων είναι τα κύτταρα, τα οποία συνδυάζονται μεταξύ τους και με τις μεσοσκυτάριες ύλες χημικά συμπεριφέρονται τους ιστούς. Οι σπουδαιότεροι από τους ιστούς είναι ο μυϊκός, ο συνδετικός, ο επιθηλιακός, ο νευρικός και ο λιπαρός. Από τον συνδυασμό των διαφόρων ιστών προκύπτουν τα διάφορα όργανα που χημικά συμπεριφέρονται τους ιστούς.

Ιδιαίτερη σημασία για το κρέας έχουν ο μυϊκός και ο λιπαρός ιστός. Όσο περισσότερο μυϊκό ιστό έχει ένα κομμάτι κρέας, τόσο λιγότερο λιπαρό ιστό έχει και αντίθετα.

Ο μυϊκός ιστός, η δομή του οποίου φαίνεται στο σχήμα 10–1, αποτελείται από μεγάλο αριθμό μυών, οι οποίοι με τη σειρά τους αποτελούνται από μυϊκές δέσμες. Κάθε δέσμη αποτελείται από μυϊκές ίνες που μοιάζουν με λεπτό ρολό μεταλλικών νομισμάτων πάχους λίγων μόλις μικρομέτρων (μμ). Κάθε μυϊκή ίνα αποτελείται από πολλά μυοϊνίδια, χαρακτηριστικά εικόνα των οποίων φαίνεται στο σχήμα 10–1. Κάθε μυοϊνίδιο απαρτίζεται από επαναλαμβανόμενες μονάδες, τα σαρκομερή, τα οποία έχουν μήκος 2–3 μμ. Σε κάθε σαρκομερές διακρίνονται η ζώνη H (σχ. 10–1 Δ), η γραμμή Z και οι ταινίες A και l. Το μέγεθος και η θέση των ζώνων και γραμμών αυτών έχει άμεση σχέση με την κατάσταση του μυός. Όταν δηλαδή ο μυς συσταλεί, το μήκος του σαρκομερούς μειώνε-
Σχήμα 10–1. Σχεδιάγραμμα σχεδιάσεως του μυός (A) μυς, (B) μυίκη δέσμη (Γ) μυική ίνα, (Δ) μυοίνιδιο, (Ε) σαρκομερές με τα μυοστοιχεία του (ΣΤ–Ι) κάθετη τομή των μυοστοιχείων, (Κ) μόρια ακτίνης (Λ) μυοστοιχείο ακτίνης, (Μ) μυοστοιχείο μυοσίνης, (Ν) μόριο μυοσίνης αποτελούμενο από τη (Ω) βαρειά μερομυοσίνη και (Ξ) ελαφρά μερομυοσίνη.
ταί αἰσθήτα, γιατί τα στοιχεία της ακτίνης και μυοσίνης (σχ. 10-1 Λ.Μ) αλληλοκαλύπτονται. Τέλος εξωτερικά ο μύος περιβάλλεται από προστατευτική μεμβράνη, αποτελούμενη από συνδετικό ιστό, το επιμάσιο. Περαιτέρω κάθε μυϊκή δέσμη περιβάλλεται από παρόμοια μεμβράνη, το περιμύο, και κάθε μυϊκή ίνα από το ενδομύο. (σαρκόλημα). Ο μύος συνδέεται με τα οστά μέσω των τενόντων που αποτελούν την προέκταση του μυός στα δύο του άκρα.

10.2 Σύσταση του μυός

Το κύριο συστατικό του μυός είναι το νερό που κατά μέσον όρο φτάνει τα 75% κ.β.

Οι πρωτεΐνες (18.5% κ.β.) του μυός διακρίνονται σε τρία είδη: τις μυοϊνόδεικες (9.5% μυοσίνη, ακτίνη, προπορμηοσίνη), τις σαρκωπλασμικές (6.0% μυογλοβινή, αιμογλοβινή) και τις πρωτεΐνες του συνδετικού ιστού (3% κολλαγόνο, ελαστινή). Το λιπός που ανάλογα με την προέλευση του μυός κυμαίνεται μεταξύ 1.5-13.0%, (μ.ο. 3.0%) αποτελείται από ουδέτερα λιπόδια, φωσφολιπίδια, χοληστερόλη κ.τ.λ. Τα σημαντικότερα λιπαρά οξέα που απαντούν στο λίπος του μυός περιλαμβάνουν το ελαϊκό οξύ (40%), το παλμιτικό οξύ (28%), το στεατικό οξύ (20%), το λινολεικό (5%) και το λινσελεικό (0.5%). Οι υδατάνθρακες (1%) αποτελούνται από γλυκογόνο, γλυκόζη και σ-φωσφογλυκόζη. Τα Αζατούχα μη πρωτεϊνικά συστατικά (15%) αποτελούνται από κρεατίνη, κρεατινίνη, τα νουκλεοσύνδεσμα ATP και ADP και τα πεπτίδια, καρνουσίνη, ανασερίνη κ.ά. Από τα ένζυμα τα σπουδαιότερα είναι τα πρωτεολυτικά, τα σακχαρολυτικά και τα οξειδωτικά. Στα ένζυμα οφείλεται σε μεγάλο βαθμό η ώριμαση του κρέατος. Τα ανόργανα συστατικά (1%) περιλαμβάνουν κάλιο, φωσφόρο, θείο, χλώριο, νάτριο και σε μικρότερα ποσά Mg, Ca, Fe, Co, Cu, Zn και

| ΠΙΝΑΚΑΣ 10-1 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Νέση % σύσταση του αμυών κρέατος και ψαριών χορίς κόκαλα | Κρέας | Ψάρι |
| Συστατικό | Βοδινό | Πρόβατου | Χοίρου | Μπαλαλάρος | Ρέγγα | Σαρδέλλες | κονσέρβα |
| Πρωτεΐνες | 15 | 13 | 12 | 16 | 16 | 20 |
| Λιπός | 28 | 31 | 40 | 0.5 | 15 | 24 |
| Νερό | 56 | 55 | 47 | 81 | 66 | 50 |
| Λαβέστιο | 10 | 10 | 10 | 25 | 100 | 400 |
| Σίδηρος | 0.4 | 2.0 | 1.0 | 1.0 | 1.5 | 4.0 |
| Βιταμίνη A | 50 | 50 | 0 | 0 | 150 | 210 |
| Θειαμίνη | 80 | 160 | 720 | 60 | 10 | 90 |
| Θερμίδες | 312 | 331 | 408 | 69 | 199 | 296 |
Μν. Το κρέας περιέχει πολύ μικρά ποσά βιταμινών, τα οποία ελαττώνονται ακόμη περισσότερο με την αύξηση της ηλικίας των ζώων. Στον πίνακα 10–1 δίνεται η μέση % σύσταση του κρέατος ορισμένων θηλαστικών και ψαριών.

Λόγω της ιδιαίτερης σημασίας που έχουν οι πρωτεΐνες του μυώς, εξετάζονται στη συνέχεια λεπτομερέστερα.

Α. Μυοϊνώδεις πρωτεΐνες ή πρωτεΐνες της μυϊκής συστολής

Οι σπουδαιότερες πρωτεΐνες της κατηγορίας αυτής είναι η ακτίνη και η μυοσίνη. Η μυοσίνη αποτελεί το 15–30% των μυοϊνώδων πρωτεινών. Η μυοσίνη αποτελείται από δύο πολυπεπτίδια συνδεμένα μεταξύ τους κατά τέτοιο τρόπο ώστε να σχηματίζουν δομή α-έλικα. Το μοριακό τους βάρος είναι περίπου 470,000 d. Το μακρομοριό της μυοσίνης φέρει στην άκρη του αφαιρετική κεφαλή (βαριά μυοσίνη, σχ. 10–1 Ο) η οποία παρουσιάζει ενζυματική δραστηριότητα (ATPαση) και μπορεί να αντιδρά με την ακτίνη. Η ακτίνη βρίσκεται στο μυ με τη μορφή διπλού έλικα, τη λεγόμενη ινώδη ακτίνη (σχ. 10–1Α).

Η αφαιρετική ακτίνη (σχ. 10–1 Ο), η οποία αποτελεί το μονομερές της ινώδους ακτίνης, έχει τη δυνατότητα να ενώνεται σταθερά με το ATP (αδενοσιντριφωσφορικό οξύ) που επίσης βρίσκεται στα μυϊκά κύτταρα και παρουσιάζει ιόντων Mg2+ πολυμεριζέται για να δώσει την F-ακτίνη με σύγχρονη υδρόλυση του ATP προς ADP και φωσφορικό οξύ. Όταν η ακτίνη και η μυοσίνη, σε καθαρή κατάσταση, αναμιχθούν, σχηματίζεται το σύμπλοκο της «ακτομυοσίνης», με τη βοήθεια σουλφουδρικών δευτερόλεπτων μεταξύ των αμινομέδων των δύο πρωτεινών.


Β. Σαρκοπλασμικές πρωτεΐνες

Σπουδαιότερο εκπρόσωπο της κατηγορίας αυτής είναι η μυογλοβίνη και η αιμογλοβίνη, στις οποίες οφείλεται το χαρακτηριστικό κόκκινο χρώμα του κρέατος και οι οποίες εξετάζονται, με λεπτομέρεια, στο κεφάλαιο 16.3. 'Αλλες πρωτεΐνες της κατηγορίας αυτής περιλαμβάνουν διαλυτά γλυκολυτικά ένζυμα καθώς και άλλα ένζυμα, όπως η κρεατινοκινάση και η ΑΜΡδιαιμινάση.

Γ. Πρωτεΐνες του συνδετικού ιστού

Οι σπουδαιότερες ‹παραδεκτικές› πρωτεΐνες του μυώς είναι το κολλαγόνο και η ελαστίνη.

1. Κολλαγόνο. Αποτελεί το κύριο κλάσμα των συνδετικών πρωτεινών και
συνεισφέρει στη σκληρότητα του μυϊκού ιστού. Αντιπροσωπεύει περίπου το 30–35% των συνολικών πρωτεϊνών στα θηλαστικά. Ένα κλάσμα του κολλαγόνου διαλύεται σε ουδέτερο διάλυμα άλατος, όλο κλάσμα διαλύεται σε αξία και τρίτο κλάσμα είναι ολότελα αδιάλυτο. Η βασική μονάδα του κολλαγόνου είναι το τριπολικολάγον, κυλινδρική πρωτεΐνη μήκους 2,800 Α. Αποτελείται από 3 πεπτιδικές αλυσίδες συνδεδεμένες σε ελικοειδή δομή, μοριακού βάρους περίπου 300,000 d. Η διαλυτότητα του κολλαγόνου ελαττώνεται καθώς οι διαμορφικοί δεσμοί στο μακρομόριο συζάνουν. Το κολλαγόνο παρουσιάζει ιδιαίτερα ενδιαφέρον γιατί είναι η μόνη πρωτεΐνη που περιέχει: α) μεγάλο ποσοστό υδροξυπρολίνης και β) υδροξυλυσίνης.

Δύο βασικές οξειδωτικές αντιδράσεις που συμβαίνουν στο μακρομόριο του κολλαγόνου είναι η μετατροπή της προλίνης σε υδροξυπρολίνη και της λυσίνης σε υδροξυλυσίνη.

Η πιο χαρακτηριστική μεταβολή που υφίσταται το κολλαγόνο είναι η μετατροπή του σε ζελατίνη. Όταν το κολλαγόνο θερμαίνεται, πάνω από ορισμένη θερμοκρασία, υδρολύνεται αρκετοί ενδομοριακοί, διαμοριακοί καθώς και πεπτιδικοί δεσμοί στο μακρομόριο του. Έτσι σχηματίζεται η άμορφη δομή της ζελατίνης. Η μεταβολή αυτή είναι ουσιαστικά μερική μετουσίωση, αφού διατηρείται μερικά η δομή της πρωτεΐνης. Ολοκληρωτική καταστροφή της αρχικής δομής καταλήγει στο σχηματισμό της κόλλας. Ελαττωμένης της θερμοκρασίας το μόριο του κολλαγόνου ανασυνιστάται μερικά. Η σχηματιζόμενη ζελατίνη είναι μια πικτή, η σταθερότητα της οποίας είναι συνάρτηση της αρχικής συγκέντρωσης του κολλαγόνου. Μετατροπή του κολλαγόνου σε ζελατίνη γίνεται κατά το μαχείρι του κρέατος και ο οποίο οφείλεται η ζελατινοειδής ύφες του προϊόντος μετά το μαχείρι και την ψύξη που ακολουθεί.

2. Ελαστίνη. Αποτελείται από ίνες που φέρνουν διακλαδώσεις και παρουσιάζει μεγάλη ελαστικότητα. Απαντά κυρίως στις αρτηρίες του αίματος και πολύ λιγότερο στο μυϊκό ιστό και συγκεκριμένα μεταξύ των μυϊκών δεσμών.

Η διακλαδούμενη δομή οφείλεται στην παρουσία των αμινοξέων δεσμοσινής και ισοδεσμοσινής.

10.3 Συστολή του μυός

Στο μυό που βρίσκεται σε ανάπαυση η ακτίνη και η μυοσινή βρίσκονται χωρισμένες μέσω του συμπλόκου Mg–ATP, το οποίο δρα σαν πλαστικοποιητής. Με εντολή του νευρικού συστήματος στην αρχή του κύκλου της συστολής του μυός, ελευθερώνεται Ca²⁺ από το σαρκόπλασμα (ισοζύγιο από αντιστοιχοποιών των λιπαίων κυττάρων). Τα ιόντα Ca²⁺ ελευθερώνουν ATP από το σύμπλοκo Mg–ATP και παύονται ενερ-
χοποιούν τη βαριά μερομυσική (HMM). Η τελευταία (HMM) διασπά το ATP προς ADP ελευθερόντας ενέργεια του φωσφοροδεσμού που επι-
τρέπει την προσέγγιση των τημιμάτων της ακτίνης με τη μυσική (σχημα-
tισμός συμπλοκής «ακτιμυσικής» στο σαρκομερές). Συνολικά η συ-
στολή του μυών εκφράζεται σαν ελάττωση του πλάτους της ζώνης H (σχ.
10–1E).
Στη συνέχεια κατά τη διαστολή του μυών, ύστερα από νέα εντολή του
νευρικού συστήματος επαναδεσμεύονται τα ιόντα Ca²⁺ από το σαρκό-
πλάσμα, επανασχηματίζεται το σύμπλοκο Mg²⁺–ATP, πράγμα που διασπά
την ακτιμυσική σε ακτίνη και μυσική και ο μύος ηρεμεί. Αυτό είναι το
λεγόμενο μοντέλο ολίσθησης των στοιχείων της ακτίνης και μυσικής του
Huxley, 1969.

10.4 Τύποι μυϊκών ιστών

Οι μύες διαφέρουν μεταξύ τους ως προς το μέγεθος, το σχήμα, το μήκος
και το χρώμα. Διακρίνονται με βάση το χρώμα τους σε κόκκινους και
λευκούς. Οι δύο αυτοί τύποι μυών έχουν διαφορετική αποστολή στον οργα
νισμό. Οι κόκκινοι μύες περιέχουν ποσοστό κόκκινων μυϊκών ιών
μεγαλύτερο του 40%, λόγω αναπτυγμένου αγχειακού συστήματος. Έχουν
μεγάλη περιεκτικότητα μυογλοβινής, μεταφέρουν στα όργανα μεγάλες
ποσότητες οξυγόνου και χρησιμοποιούνται στον οξειδωτικό μεταβολισμό
για ελαττωμένη, αλλά μακροχρόνια δραστηριότητα. Αντίθετα, οι λευκοί
μύες προορίζονται για έντονη, αλλα βραχύχρονη δραστηριότητα.
Εκτός από το μυϊκό και το συνδετικό ιστό, σημασία για το κρέας έχει και
ο λίπαρος ιστός. Ο ιστός αυτός αποτελείται από λιπόδα κύτταρα, τα
οποία είναι αφαιρικά και περιέχουν λίπους υπό μορφή σταγόνων. Το λίπος
απαντά, κατά κύριο λόγο, κάτω από το δέρμα και χύρω από τα εσωτερι
κά όργανα. Δεν αποτελεί μέρος του ιχθυού του κρέατος. Ο συνδετικός
ιστός περιέχει επίσης ένα ποσό λιπιών, το οποίο εν τούτω δεν διακρίνε
ται κατά την απλή θέωρηση του κρέατος. Το γεγονός αυτό καθιστά δυ
σκόλτηρη την πέψη του κρέατος, γιατί περιβάλλει τις μυϊκές ίνες με ένα
λεπτό ελατόδες στρώμα ανθεκτικό στην επίδραση των πεπτικών υγρών.

10.5 Ακαμψία του Θανάτου (Rigor Mortis)

Αμέσως μετά τη σφαγή του ζώου, αρχίζει μια σειρά πολύπλοκων φυσικών
και χημικών μεταβολών στο μυϊκό ιστό που έχει σαν αποτέλεσμα τη με-
tατροπή του σε κρέας έτοιμο για κατανάλωση. Ο μεταβολισμός στο μυϊ-
κό ιστό συνεχίζεται και μετά τη θανάτωση του ζώου με τη διαφορά ότι,
λόγω της διακοπής στην παροχή του οξυγόνου, οι αντιδράσεις γίνονται
αναερόβια.
Το γλυκογόνο παρουσιάζει μικρής ποσότητας οξυγόνου διασπάται προς γαλακτικό οξύ, σύμφωνα με τις αντιδράσεις:

$$2(C_6H_{12}O_6) + 5O \rightarrow 4v \ CH_3C-COOH + H_2O$$

γλυκογόνο \[ O \] \[ πυροσταφυλικό οξύ \]

$$CH_3C-COOH + H_2O \rightarrow CH_3CH-COOH + OH$$

Ο \[ H \] \[ γαλακτικό οξύ \]

Το γαλακτικό οξύ συσσωρευόμενο κατεβάζει το pH του μυϊκού ιστού από 7.2 σε 5.5. Ταυτόχρονα ο μύς χάνει την ευκαμπτία του και γίνεται σκληρός. Το φαινόμενο αυτό είναι γνωστό σαν ακαμψία του θανάτου ή rigor mortis, και έχει σαφείς επιπτώσεις στη γεύση, το χρώμα, το χυμόδες και την τρυφερότητα του κρέατος που θα προκύψει. Η σκληρύνση του μυϊκού ιστού μεταξύ άλλων οφείλεται και στο γεγονός ότι κατά την πιο πάνω διαδικασία ελαχίστον είναι παραγωγή του ATP με αποτέλεσμα να ενώνονται οι πρωτεΐνες μυοσήνη και ακτίνη (σχηματισμός συμπλόκου ακτομυοσίνης). Αυτό αντιστοιχεί σε επιβράχυνση του μυϊκού ιστού και συνεπώς σκληρύνση. Η επιβράχυνση ξεκινάει από το αν υπάρχει ερεθισμός για σωστολή του μύου, όπου υπάρχει ακόμη αρκετή ποσότητα ATP που παρέχει ενέργεια για την επιβράχυνση. Εάν ο ερεθισμός αυτός εκθελωθεί όσο υπάρχει αρκετό ATP, τότε παρατηρείται σημαντική επιβράχυνση στον μυϊκό ιστό. Αν πάλι το ATP έχει σχεδόν εξαντληθεί, όταν εκθελωθεί ο ερεθισμός, τότε δεν παρουσιάζεται σημαντική σωστολή στον μύο. Γι' αυτό χρειάζεται ειδική μέριμνα ώστε τα ζώα, πριν από τη σφαγή, να μην ερεθιζούνται και να ξεκουράζονται έτοι ώστε ο μυϊκός ιστός να βρίσκεται, κατά το δυνατό, σε χαλάρωση, κατάσταση που αντιστοιχεί σε τρυφερό κρέας.

### 10.6 Παρέλευση της ακαμψίας του θανάτου (σίτεμα)

Με την παραγωγή του γαλακτικού οξέος στο μυϊκό ιστό, το pH κατεβαίνει από το 7.2 στο 5.5 περίπου. Η τιμή αυτή του pH συμπίπτει σχεδόν με το ισοηλεκτρικό σημείο των περισσότερων πρωτεϊνών του μυϊκού (pI μυοσίνης = 5.4). Στο ισοκινητικό του σημείο, οι πρωτεΐνες χάνουν τη σταθερότητά τους και εύκολα μετουσιώνονται. Η μετουσίωση συνδυάζεται από μερική διάσπαση των πρωτεϊνικών δεσμών με αποτέλεσμα το σχηματισμό πεπτιδίων και αμινοξέων. Διασπάσεις αυτού του είδους αυξάνουν την τρυφερότητα του κρέατος. Σημαντική εξάλλου είναι η επίδραση των πρωτεολυτικών ενζύμων όπως η θρυπήνη, η φυτοπά, απουσία ATP προκαλεί αποκοδόμηση τόσο των πρωτεϊνών του συνθετικού ιστού όσο και των
πρωτεϊνών του μυϊκού ιστού πράγμα που μεταφράζεται σε αύξηση της τρυφερότητας του κρέατος. Αν ο μυϊκός ιστός διατηρηθεί σε χαμηλή θερμοκρασία (1–3°C) η παρέλευση της ακαμψίας του θανάτου πραγματοποιείται σε δύο περίπου μέρες. Στο σχήμα 10–2 φαίνεται η αύξηση της τρυφερότητας του μυϊκού ιστού σε συνάρτηση με το χρόνο αποθήκευσης.

Σχήμα 10–2. Επίδραση του χρόνου αποθήκευσης στο βαθμό τρυφερότητας του κρέατος στους 20°C.

(Από Paul and Palmer, 1972)

Η καλύτερη δυνατή γεύση και τρυφερότητα επιτυγχάνονται μετά από ωρίμαση για 2–4 εβδομάδες στους 2°C. Για την αύξηση της τρυφερότητας του κρέατος χρησιμοποιούνται ακόμη διάφοροι «τρυφεροποιετές» όπως το NaCl σε συγκέντρωση 2%. Για τον ίδιο σκοπό χρησιμοποιούνται πρωτεολυτικά ένζυμα (π.χ. παπαλίνη). Μια ώρα πριν από τη σφαγή γίνεται ένεση στο ζώο με διάλυμα ενζύμου 5–10%. Το ένζυμο μέσω του αίματος διασπά τις πρωτεΐνες και τρυφεροποιεί το μυϊκό ιστό.

Κατά την ωρίμαση του κρέατος επέρχεται και αλλαγή του χρώματος του. Το ερυθρό χρώμα του βοδινού κρέατος δεν οφείλεται στο αίμα που περιέχει αλλά στη χρωστική μυογλοβίνη (ή μυοσφαιρίνη) που βρίσκεται διασπαρμένη σε όλη τη μάζα του. Κατά την ωρίμαση η μυογλοβίνη προσλαμβάνει οξυγόνο και μετατρέπεται σε οξυμυογλοβίνη, η οποία κατά την παραπέρα παραμονή μετατρέπεται στην καστανόρυθμη μεταμυογλοβίνη. Περισσότερα για τις παραπάνω μεταβολές της μυογλοβίνης αναφέρονται στο κεφάλαιο 16.3).
10.7 Παράγοντες που επηρεάζουν τη σύσταση και την ποιότητα του κρέατος

Η σύσταση και η ποιότητα του κρέατος επηρεάζονται από πολλούς παράγοντες, σημαντικότεροι των οποίων είναι:

Α. Το είδος του ζώου (βόδι, πρόβατο, χορινό, κατσίκι, κοινέλι, κοτόπουλο κ.ά.).

Β. Η ράτσα, που επηρεάζει άμεσα το χρώμα, την τρυφερότητα, το χυμόδες, την κατανομή του λίπους στους ιστούς κ.ά.

Γ. Το φύλο του ζώου: Συνήθως το κρέας του θηλυκού είναι πιο τρυφερό και γευστικό και διαφέρει στην υφή από το κρέας του αρσενικού.

Δ. Η ηλικία του ζώου: Η αναλογία του μυϊκού και λιπαρού ιστού / κόκαλου μεταβάλλεται αισθητά με την ηλικία του ζώου. Το ποσοστό του λιπίδου αυξάνεται, η συνολική υγρασία ελαττώνεται, πράγμα που καθιστά το κρέας σκληρό και δύσπεπτο. Με την ηλικία γενικά αυξάνεται το ποσοστό του συνδετικού ιστού σε βάρος του μυϊκού ιστού. Δηλαδή παρατηρείται σύνδεση των ινών του κολλαγόνου με αχματισμό διακλαδώσεων, πράγμα που καθιστά το κρέας σκληρό. Ακόμη το χρώμα του κρέατος σκούρανεται με την αύξηση της ηλικίας του ζώου.

Ε. Ο τρόπος διατροφής του ζώου: Διατροφή με υψηλό ενεργειακό περιεχόμενο δίνει κρέας γευστικό τρυφερό με καλό χυμόδες.

ΣΤ. Ο βαθμός άσκησης του ζώου: Γενικά οι μέσες που ασκούνται πολύ (μέσες των ποδιών) δίνουν κρέας σκληρό.

Ζ. Η ένταση (stress). Δημιουργία έντασης πριν από τη θανάτωση του ζώου δίνει κρέας σκούρο και στενό για τους λόγους που αναφέρθηκαν παραπάνω (κεφ. 10.5).

10.8 Επίδραση των διαφόρων κατεργασιών στο κρέας

Οι διάφορες μέθοδοι κατεργασίας του κρέατος έχουν σκοπό να προφυλάξουν το προϊόν από: (Α) την επίδραση των μικροοργανισμών. (Β) τις χημικές αντιδράσεις ανάμεσα στα συστατικά των ιστών. (Γ) τις φυσικές ανεπιθύμητες μεταβολές όπως π.χ. αφυδάτωση κ.τ.λ.

Οι μέθοδοι αυτές περιλαμβάνουν:
1. Τη θέρμανση. 2. Την ψύξη. 3. Την κατάψυξη. 4. Τη χρήση χημικών συντηρητικών (αλάτια). 5. Τη συσκευασία.

Η πιο συνηθισμένη κατεργασία από τις παραπάνω είναι η θέρμανση (μαγείρεμα) και η ψύξη.

1. Θέρμανση

Με τη θέρμανση του κρέατος καταστρέφονται όλοι ή οι περισσότεροι από τους μικροοργανισμούς και αδρανοποιούνται τα ένζυμα. Κατά το
μαγείρεμα οι πρωτεΐνες του μυϊκού ιστού υφίστανται θρόμβωση και με-
τουσίαση (60–80°C) με αποτέλεσμα το κρέας να καθίσταται λιγότερο ή
περισσότερο μαλακός, ανάλογα με τις συνθήκες του μαγειρέματος. Συνέ-
πεια της μετουσίασης είναι η ελάττωση της ικανότητας συγκράτησης νε-
ρού από τις πρωτεΐνες του κρέατος (WHC, Water Holding Capacity). Η με-
γαλύτερη απόλεια στην ικανότητα συγκράτησης του νερού (WHC) συμ-
βαίνει στις θερμοκρασίες 60–80°C.

Ο συνδετικός ιστός (το κολλαγόνο και η ελαστική) γίνεται μαλακός αν
το κρέας θερμανθεί επί ένα χρονικό διάστημα στους 65°C και στη συνέ-
χεια σε υψηλότερες θερμοκρασίες επί αρκετό χρονικό διάστημα. Το κολ-
λαγόνο υδρολύεται και σχηματίζει ζελατίνη και έτσι κάνει το κρέας μα-
λακότερο. Επίσης οι λιπαρός ιστός τήκεται και κάνει το κρέας πιο χυμώ-
δες. Αντίθετα κατά την παρατεταμένη θέρμανση (2 ώρες στους 40°C)
επέρχεται σκλήρυνση των μυϊκών ινών γιατί ελαττώνεται η διαλυτότητα
tων πρωτεΐνων κάτω από τα παραπάνω συνθήκες. Για τους λόγους αυ-
τού τα κομμάτια κρέατος που περιέχουν μεγάλες ποσότητες συνδετικού
ιστού και μικρές ποσότητες μυϊκών ινών πρέπει να ψήνονται με παρατε-
tαμένη θέρμανση, παρουσία νερού. Αντίθετα τα κομμάτια που περιέχουν
λίγο συνδετικό ιστό (όπως οι μπριζόλες) πρέπει να ψήνονται σε ψηλές
θερμοκρασίες επί σχετικά μικρό χρονικό διάστημα για να περιορισθεί η σκλή-
ρυνση των μυϊκών ινών. Επίσης κατά το μαγείρεμα μετουσιώνεται η χρω-
στική μυογλοβίνη με αποτέλεσμα την απελευθέρωση του συγκροτήματος
tης αίμης (βλ. κεφ. 16.1), η οποία εύκολα οξειδώνεται προς τη χρωστική
αιμίνη (καφέ χρώματος). Τέλος κατά το μαγείρεμα αναπτύσσεται το χα-
ρακτηριστικό άρωμα του κρέατος. Το άρωμα αυτό είναι αποτέλεσμα της
παρουσίας μεγάλου αριθμού ενδόσεων, όπως η π.χ. 1 -οκτέν(3)ολή, 1 -
penten(3)ολή, 2 -εζεν(1)ολή, 2-ακετυλ(2)θείαζολίνη, 4-υδροζι(2.5)βιε-
θυλ(3)(2H) φουρανόνη καθώς και 3-υδροζι(2)βουτανόνη και γ-
βούτυρολακτόνη.

Όσον αφορά στην επίδραση του ψησίματος στην θερμική αξία του
κρέατος πρέπει να λαμβάνεται υπόψη ότι αυτή περιορίζεται λίγο λόγο
σημαντικής απόλειας βιταμινών και κατά κύριο λόγο της θειαμίνης.

2. Ψύξη

Η ψύξη συντηρεί το μυϊκό ιστό, γιατί παρεμποδίζει την ανάπτυξη των μι-
κροοργανισμών και επιβραδύνει τις χημικές και ενζυματικές αντιδράσεις
που συμβαίνουν στο προϊόν σε θερμοκρασία περίβαλλοντος. Κατά την
ψύξη πρέπει να δίνεται ιδιαίτερη προσοχή στην υγρασία του προϊόντος.
Μικρή απόλεια υγρασίας στην επιφάνεια είναι επιθυμητή, γιατί παρεμπο-
δίζει την ανάπτυξη των μικροοργανισμών. Μεγάλες απόλειες υγρασίας
πρέπει να αποφεύγονται, γιατί καθιστούν το προϊόν σκληρό και διευκο-
λύνουν την οξείδωση της μυογλοβίνης σε μεταμυογλοβίνη, οπότε το
3. Κατάψυξη

Κατά την κατάψυξη, με το σχηματισμό των πρώτων κρυστάλλων αυξάνεται η συγκέντρωση των αλάτων στο μυϊκό ιατρό. Η αύξηση αυτή στη συγκέντρωση των αλάτων σε συνδυασμό με την πιθανή μεταβολή του pH προκαλούν μετασχέση των πρωτεϊνών του μυός. Η μετασχέση, όπως αναφέρθηκε και πριν, προκαλεί ελάττωση στην ικανότητα συγκράτησης νερού (WHC) του προϊόντος, έτσι ώστε κατά την απόψυξη παρατηρείται μεγάλη απόλυτη υγρότητα του κρέατος. Τα ένζυμα γενικά δεν αδρανοποιούνται με την κατάψυξη. Οι λιπάσεις και οι φωσφοφιλιπάσεις ελευθερώνουν λιπαρά οξέα από το λίπος, τα οποία μπορούν εύκολα να αυξίζουν. Η πιθανότητα μιας τέτοιας αυξάνει με την παράταση του χρόνου κατάψυξης.

4. Χρήση χημικών συντηρητικών (αλάτιση)

Κυρίως χρησιμοποιείται NaCl και NaNO₂ ή NaNO₃. Η προσθήκη NaCl παρεμποδίζει την ανάπτυξη των μικροοργανισμών επειδή δημιουργούνται υψηλές τιμές ωσμοτικής πίεσης. Η προσθήκη NaNO₂ παράγει το γνωστό ρούχα χρώμα που σφετέριστα στη νιτρόδοξουγλυκόνη (NomB bk. κεφ. 16.1). Η NO₃Μ με τη μορφή αυτή είναι ασταθής αλλά με τη θέρμανση σχηματίζει τη σταθερή ένωση νιτρόδοξου-χρωματωγόνου (DNOMb).

5. Συσκευασία

Αποτελεί συμπληρωματική μέθοδο συντήρησης του κρέατος. Το ήδη κατεψυγμένο αποστειρωμένο προϊόν συσκευάζεται σε πλαστικό ή μεταλλικό κουτί αντίστοιχα, για να αποφευχθεί η πρόσληψη οξυγόνου και νερού. Η συσκευασία για το φρέσκο κρέας πρέπει να είναι σχετικά αδιάπεραστη στην υγρασία, αλλά και σχετικά διαπερατή από το οξυγόνο ώστε να σχηματίζεται η χρωστική οξυμουγλυκόνη με το χαρακτηριστικό έντονο κόκκινο χρώμα. Εκτός του μυϊκού κρέατος χρησιμοποιούνται για τη διατροφή διάφορα προϊόντα κρέατος, όπως το ζαμπόν, το μπέικον, τα αλλαντικά καβός και παραποιούν οι σφαιγής. όπως το νεφρά, τα νεφρά, η καρδιά, η γλώσσα, το μυαλό, τ.τ.λ. Τέλος κατά τα τελευταία χρόνια έχουν παρασκευαστεί υποκατάστατα του κρέατος κυρίως από πρωτεΐνη σούγιας, η οποία μετά από κατάλληλη επεξεργασία για την προσοποποίηση της υφής της, δίνει προϊόντα παραπλησίως εμφάνισης και θρεπτικής αξίας με το κρέας.
Βιβλιογράφια

3. W. D. Brown and A.L Tappel: Pigment-antioxidant Relationships to Meat Color Stabili-
5. J.F. Price and B.S. Schweigert (eds.): The Science of Meat and Meat Products, 2nd edit,
6. E.J. Briskey, R.G. Cassens and B.B Marsh (eds.): Physiology and Biochemistry of
11. Γ.Ζ. Κατσά: Το Κρέας, τα Πραιόντα και τα Παραπραιόντα του, Αθήνα (1976).
12. J.C. Forrest, E.D. Aberle, M.B. Hedrick, M.D. Judge and R.A. Markel.: Principles of
Ανοικτά Ακαδημαϊκά Μαθήματα
Πανεπιστήμιο Ιωαννίνων

Τέλος Ενότητας
Χρηματοδότηση

• Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτηθεί μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού.
• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα Αναφοράς


Σημείωμα Αδειοδότησης

• Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη.

[1] https://creativecommons.org/licenses/by-sa/4.0/.